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1. In t roduc t ion

The l as t  f i v e  years  have brought  c o n s i d e r a b l e  advances  in
the theory of the boundary -va lue  prob lem of phys ica l  ge odesy in the
fo rmu la t ion  of Mo lode nsky , wh ich  is the de te rm ina t i on  of the
p hys ica l  ea r th ’ s su r face  from g rav i t y . These advances  have been
accomp l i shed  main ly  through the work  of T.  Krarup, L. Hörmander
and F. Sansd.

The present  report  is devoted  to a rev iew  of th is  work .  Its
aim is to i n t roduce  the reader to the bas i c  ideas and geode t i ca l l y
important resu l ts , which  are somet imes hidden between fo rm idab le
mathematical technicalities. We shall thus attempt what mathema-
ticians call a “heuristic exposition ” , for mathematical details
the reader will be referred to the original papers. The treat-
ment of the linear problem in gravity space in sec.8 is new.

The prob lem of Mo lodensky  may be fo rmu la ted  br ie f ly  as
f o l l o w s :  g iven , at al l  po in ts  of the phys ica l  ea r th ’ s s u r f a c e  S
the g rav i ty  potent ia l  W and the g rav i t y  vec to r  ~ , to deter-
mine the surface S . The potential W can be determined by
l e ve l i ng  combined w i t h  grav i ty  measurements;  th is g ives  the
potent ia l  up to an unknown cons tan t  wh i ch , however , can be found
i n d i r e c t l y  by o t h e r  m e t h o d s , e s p e c i a l l y  d i s t a n c e  measurements .
The magnitude of the grav i ty  vec tor  ~ , wh ich  is g rav i ty  g , is
m e a s u r e d  b~y grav imetry , and the di~ e c t i o n  of ~ , w h i c h  i s  t h e
plumb l ine , is ob ta ined  by as t r onomica l  measurements  of l a t i t ude
c
~ a n d  l o n g i t u d e  A . It is assumed that  these measurements  have
been cor rec ted  for l u n i - s o la r  t ida l  e f f ec t s  and o ther  temporal
v a r i a t i o n s , so that our prob lem is independent  of t ime.  We fu r ther
suppose that  the e f f ec t  of the a tmosphere  has been taken into
account  by app rop r i a te  reduc t i on .  Hence , the space ou ts ide  the

• su r face  S can be cons ide red  as empty .

..

~ 
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2

We thus assume that the earth is a rigid body which rotates
with constant and known angular velocity w around a fixed axis ,
which passes through the earth’ s enter of mass. This center of
mass will be taken as the origin 0 of a cartesian coordinate
system , the x3 axis coinciding with the axis of rotation.

The gra vitational potential V is a harmonic function
outside S . For large values of the radius vector

r = x j = ~~ + x~ + x~ (1-1)

it has an expansion in spherical harmonics of the form

GM “ (°~ ‘~) ~ (e ,~ )V(x ) = .
~~

— + ‘
r2 

+ 3 + . . . , (1—2)

where G is the gravitational constant , M denotes the total
mass of the earth , an d Y ( o ,x) are Laplace surface harmonics ,
o (polar distance ) and x (longitude) forming together with the
radius vector r a syst-em of spherical coord inates related to

• the cartesian coordinates x = (x1 , x2 , x 3) by

x 1 = r sin e cO SA

= r sine sinx , (1 — 3)

x3 
= r cose .

The condi tion that the coordinate origin 0 coincides
with the center of mass implie s that the spherical harmonics of
first degree vanish identically: 

- • - • ---—----• •- - • - ~--~~~~~---—-------—-- “ - -——.- -——• ----• • • —~--- --•-- —--
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Y 1 (e ,A )  0 , ( 1 — 4 )

so that V must have the form

• V(x) = + 0(-~—~.) for r -
~ . (1-5)

The gravity potential W is then given by

W (x) = V (x) + 
1 2 (x 2 

+ x~ ) . (1-6)

It w i l l  also be assumed that the surface S is a one-to-
one image of the sphere and that it is a smooth surface , being

• differentiable as often as required.
It may be questioned whether Molodensky ’ s problem thus

formulated is to-day geodetically relevant at all. On the one
hand , the prerequisites for Mo lodensky ’ s problem , especiall y
continuous coverage of the whole earth ’ s surface by gravity
measurements , are still far from being realized; on the other

• hand , there are many more date of different kind , such as satellite
data , that transcer c4 the frame of i~olodensky ’ s problem and must be
handled by data combination techniques such as least-squares
collocation.

To these questions we may answer as follows. From a
practical point of view , the integral formulas arising in the
solution of boundary-value problems are often computationa l l y
more convenient than collocation and retain their importance if
gravity data are available to a sufficient extent , at least locally
(cf. Moritz ,1975). From a theoretical point of view , the geodetic
boundary-value problem represents an especially interesting and
significant special case , whose importance for the conceptual

• - -,, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • —
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structure of geodesy, from the time of Clairaut to the present day
can hardly be overestimated (curious ly enough , the theory was
always far ahead of the data available at the time ). In fact , the
consecutive stages in the development of the b oundary-value problem --
Clairaut , Stokes , M o lodensky -- always served as measures of
perfection for geodeti c theory and set new standards.

Even today Molodensky ’ s problem is not yet comp letely
clarified from a mathematical point of view , with respect to
existence and uniqueness of the solution , in spite of the decisive
progress made in the last few years; it remains a challenge to
theoreticians.

Let us now try to get a first grasp of the mathematical
nature of Molodensky ’ s problem.

The gravity vector ~ can be expressed in terms of measured
gravity g and of astronomical latitude ~ and longitude A as

r g cos~ cosA l
• =

~~ 

g cos4 sin A . (1-7)
g sin ’~

In space the vector ~ and the potential W may be considered
functions of the rectangular coordinates:

= .a(x 1, x 2 , x 3 ) , W = W (x 1 , x2 , x 3) (1—8 )

• On the earth ’ s surface S , they are functions of two surface
coordinates , for which we may take the astronomical coordinates

~ and ~ :

• ~(~~,A ) , ~ (~~,A )  ; (1-9)
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the overbar denotes restriction of spatial functions to the surface
• . S , whereas underlining characterizes vectors (and later , matrices).

Now ~ may be expressed , in a certain sense , as a function
of S and W , symbolically

= F (S ,i~) . (1-10)

This means that , given the surface S and the gravity potential
• on it , the gravity vector ~ on S is then uniquel y determined
• and can be computed.

In fact , this may be done as follows. Let S and W be
given. Compute the centrifug al potential on S (which can be done
since the surface S is supposed to be given and consequently the
coordinates x 1 , x2 , x3 of the surface points are known) and
subtract it from ~i ; this gives the gravitational potential V
on S . From V on S we get the potential V outside S by
solving ~irich le t ’ s boundary value problem , which has a unique
solution. Now

• = grad V + centrifugal force

• (g rad denot ing  the g rad ien t )  can be computed outside S and , by
the con t i nu i t y  of f i r s t  d e r i v a t i v e s , a l s o  on S , g iving ~
Thus ~ is , in f ac t , un ique ly  d e te rmined  by S and W , so
that (1-10) holds.

Suppose now that it were possible to solve (1-10) for S

S = 

~(Li~
) (1-11)

This would express the earth’ s surface S in i~ rms of W and ~
solving Molodens ky ’ s problem.

~ 

~••- -—-~~ 
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This is probably the conceptually simplest formulation of
Molodens ky ’ s problem. However , the transition from (1-10) to (1-11)
is mathematically extremely difficult. If S , Ti and ~ were
simple real numbers and F were an ordinary function (supposed
sufficiently smooth), then the solution of (1-10) for S would
be straightforward. The existence of such a solution is guaranteed
by the elementary impl i c i t  function theorem.

In fact , however , the “function ” F in (1-10) is a rather
complicated nonlinear operator , and the existence of a solution
(1-11) is by no means obvious. There are implicit function theorems
for nonlinear operators (e.g. Dieudon n è ,196O ;Loomis and Sternberg,
1968;Schwartz ,1969;Sternberg, 1969), but the conditions for their
application are not satisfied in the geodetic case. It was t h e

merit of Hörmarider (1975) to have found , by a mathematical tour de
force , an implicit function theorem that is applica ble to the
geodetic boundary-value problem.

To get some first insight into the matter , let us forget
• all mathematical difficulties and proceed forma lly as if S ,

• and ~ were simp ly real numbers and F were a simple functions.
Since W is g iven , it can be considered fixed once and for all ,
so that (1—10) becomes a function of S onl y:

= f(S) . (1—12 )

To furth er simplify the notation , we write g instead of ~
obtaining

L 

g = f ( S )  ( 1 — 1 3 )

• Thus S is simply given by the inverse function

S = f 1 (g) , (1-14)



—-~——- --—--—-•--
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• so that the implicit function prob lem reduces to an inverse function
problem.

To practically find this inverse function , that is , to
solve (1— 13) for S , we may app ly the usual procedure for solving
nonlinear equations , namely linearization.

Let us introduce an approximation S0 to the earth’ s sur-
face S and let g be the corresponding gravity vector , related
to S by (1—13):

g = f(S ) . (1—15)

Write , formally,

S = S + A S
0 (1-16)

g = g + A g

and apply Taylor ’ s theorem to (1— 13):

g + ~g = f(S + A S )  =

= f(S ) + f’(S )AS

omitting quadratic and higher terms. In view of (1-15) this becomes

A g = f ’ ( ’ S ) A S  . (1-17)

The formal solution of this equation is

= [f’(S )l Ag . (1-18)

Let us link these ideas with the conventional approach to

- — — - - - -—~ • — .
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-— - •
~~~~
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8

Molodensky ’ s problem. Here S is the telluroid and g0 is normal

gravity on it; ~g is the usual gravity anomaly referred to the
earth ’ s surface (it is here possible to disregard the origin al
vector character of ~g and regard it as a scalar quantity) and
A S is represented by the height anomal y ~ characterizing the
separation between earth’ s surface S and telluroid S . Thus

0

(1-18) becomes

= M~g , (1-19)

w h e r e  M = [f ’ (s )T ’ denotes the linear Molodensky operator
computing ~ from ~g ; practically one uses Stokes ’ form ula

• with suitable corrections.
Higher approximations may be obtained by Newton ’ s method.

• Combining (1—15), (1-16) and (1-18) we get

= S + Lf’(S )J g - f ( S 0 ) (  
, (1-20)

where we have written S~ instead of S to indicate that by this

equation we get better approxima tion S~ rather than the true

value S itself. By repeated appl ication of this formula we get
successive better approximations 

~ 2 ’ 53~ • . ~

= + [f’(S1 )j ’  [ g - f(S 1 )1

S 3 = S 2 + f’ (S2)~ L g - f(S2) (1-21)
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Graphicall y Newton ’ s procedure is ill ustrated by Fig. 1.
The unknown abscissa S for the given ord inate g is approached

9

Figure 1

Newton ’ s Method

by following the broken line with arrows.
The convergen ce of Newton ’ s procedure is known to be very

good , namely quadratic: there is a constant K ind ependent of n
such that

IS - S < K I S - s 2 (1-22)n+1  n = n n — i

~

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—-~~~
•—— ~~~ - —.——-~~~ 
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The following sections 2 to 4 will deal with a detailed
study of the linearized problem. The remaining sections will be
devoted to two approaches to the nonlinear problem. Hörmander ’ s
appraoch is logically straightforward , using an iterative inverse
function technique basically similar to Newton ’ s method but mathe-
matically extremely invo l ved. The second approach , due to Sansc5 ,
first transforms the o r i g i na l free bouna ry value problem (the
boundary S is “free ” , that is , unknown) into a fixed boundary-
value problem by means of a Legendre transformation , thereby
essentially reducing the mathematical complexity .

2. Krarup ’ s Linearization

In the usual linearization of Molodensky ’ s problem , the
telluroid is introduced as the surface formed by the set of points
Q such that Q lies on the same ellipsoidal normal as the
corresponding point P at the earth’ s surface and that the normal
potential U at Q is equal to the actual potential W at P
cf. (Heiskanen and Moritz ,1967 ,p.292).

In his third letter on Molodensky ’ s problem that was
circulated among the members of the lAG Study Group on Mathematical
Methods in Physical Geodesy but unfortunately never published ,

• Krarup (1973) gave a more general formulation of the linearization
which is also suitable for studying the nonlinear p rob lem . ’~

In this mcre general formulation , the telluroid ~ is
now an arbitrary given surface close to the earth ’ s surface S
the points Q of which are in some one—to—one correspondence
with the points P of S ; cf.Fig . 2. We also introduce a normal
potential U which constitutes an analytic approximation to the
actual potential W ; U is usually taken as the gravity
potential of an equipotential ellipsoid.

1)
It should be mentioned that the first rigorous formulation and
linearization of Molodensky ’ s problem has been given by Meiss l
(1971) .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - - — -
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Figure 2

The te l luroid ~ as an approximation

to the earth ’ s surface S

Let

y = grad U (2-1)

denote the normal gravity vector , in the same way as

£ = grad W (2—2)

expresses the actual gravity vector.
Since ~ and U are given , we can compute U and y at

Q , that is , UQ and . As potential W and gravity ~ are
supposed to be given on S (in the notation of Section 1 , they are
W and 

~ 
), we know it at every point P on S , that is , we

know W~, and . We , therefore , can compute the differences

- UQ (2-3)

= .a~ 
- (2-4) 

—- . ~~~~~~~~~ — —~~~~~~— ~~~~~~~~~~~~~~~~~~~ —~~— ~~.——- ~~~~~~~~~~~~~~~~~~~~ —-. —
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ca l l ed  po ten t ia l  anomaly and ( v e c t o r i a l )  g rav i t y  anomaly ,  r e s p e c t i v e l y .
By appropr ia te  d e f i n i t i o n s  of the t e l l u ro i d  it is p o s s i b l e

to make one of the two quantities (2—3) and (2-4) equal to zero . In
the usual definition of the te llurcid mentioned at the beginning
of this section , we ha ve UQ = W~ and therefore

= a . (2—5)

In this definition , points P and Q are supposed to lie on the
same ellipsoidal normal. Since the ellipsoidal normal through P
i s , s t r i c t l y  speak ing ,  n o t  k n o w n , it wou ld  be t h e o r e t i c a l l y  more
correct to define Q by the three conditions

UQ = W~ , = , A~ = A~ . (2-6)

H e r e  ~ a n d  A are define d by

cos c~ cosx
1

= I c0541 sin A (2—7)
y s in c~L

in complete analogy to (1-7); thus the normal latitude q and

• longitude ~ determine the direction of the normal gravity vector
y , in the same way as ~ and A define the direction of ~
The surface formed by the points Q in this manner has been call ed
“normal surface ” in (Moritz ,1964). Krarup (1973) calls it “Marussi
telluroid” because the three “M arussi coordinates ” potential ,
latitude and longitude are identified.

In this way, the potential anomal y AW can be made zero.
Somewhat surprising at first sight is that also the gravity
anomaly A~ can be made to vanish. This requires defining the
points Q of the te l luroid by 

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ —- — - ——~~~~~ 
-
~~~~~

-— - -~~~~~
•
~~~~~ ~~~~
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i =
~~~~ 

. (2 -8)p

Express ing  th is  vec tor  cond i t i on  in terms of magn i tude and d i r ec t i on
of the vectors involved , we get three conditions

= g
~

4 = , ( 2 -9 )

A
Q

A p

wh ich  aga in  comp le te ly  determine Q . Since  g, 7- , A may be c a l l e d
“gravimetric coordinates ” , the corresponding locus of points Q

has been called by Krarup the “ gravimetric telluroid” ; for it , in
f a c t ,

= 0 . (2 - 10)

A f te r  these p o s s i b l e  specializations , let us return to the
general case in which both AW and A 9 are nonzero . As usual ,
we define the disturbing potential I by

I = W — U , (2—11)

W and U referring to the same point (this distinguishes T from
the potential anomaly AW , in which W and U refer to different
p o i n t s ! ) .

On substituting

W~ = U~ + T~ (2-12)

we get from (2-3) and (2-4)

~

-- .- - .--

~

--- --
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+ U~, - UQ = AW (2-13)

- XQ = A~ . (2-14)

Let us now preceed with the lineariz ation. We put

= vector QP (2—15)

(see Fig. 2) and systematically neglect all quantities of second
and higher order in ~ . It is well known and easy to see that
quantities such as T and A~~ have the same order of magnitude
as ~ . So also T2 , T~ , etc. are quantities of second order to
be neg lected.

By a Taylor expansion restricted to linear terms we get

= UQ + grad U = UQ + . 
~ 

, (2-16)

where the dot denotes the inner product of two vectors. Let us
proceed in the same way with the normal gravity vector:

= + grad 1 (2-17)

What is grad 1 ? To see this , let us write this equation in index
notation , using the summation convention (summation over an index
occur r ing  t w i c e ) :

1P i  
= 1Q i  

+ 
~~X . ~j = 1Q,i ~ ~~~~ ~ (2-18)

w h e r e  

—~~~~~~ --•.--- -~~~ 
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3 y .
u 1 ~ (~~~V 

~ 2 1 9‘‘ i j  
— a x .  a x .  t ax . ’ ax .ax .

J 3 1 1 . 3

H e n c e  g r a d  
~ 

is noth ing e l se  than the matrix

M = [M~~ ] = 

[~~:~ ax ~ 
J 

(2-20)

formed by the second derivatives of the normal potential U ; in

other words , i t  is the second-order normal gradient ten sor. There-

fore , we may write (2-17) as

= - . (2-21)

It is clear that 
~ 

in (2—16) and M in (2—21) refer to poi nt

Q
Let us similarly expand T~

= TQ + gra d I . .

Now , however , grad T is already small of first order , so that

grad I ç is of second order and , therefore , negligible. Thus ,

consistent with our linear approx imation , we simply have

T~ = TQ . ( 2 - 2 2 )

The insertion of (2-16), (2—21), and (2-22) into (2— 13)
and (2-14) now gives

~ 

. •  • -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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+ 
~~ 

.
~~~ 

= AW , ( 2 - 23 )

- + Mr~ = A~ . ( 2 - 2 4 )

Furthermore ,

- = (grad W)~ - (grad U)~

= grad (W — U)~

= (grad I)
~

~ (grad T) Q

for the same reason as ( 2 - 2 2 ) .  We thus f i n a l l y  get

T + = AW , (2-25)

grad I + M~ = A 9 , (2-26)

in which T and grad I refer to Q , as well as x and M . We
have used the matrix notation a

T
b for the inner product a . b

the transpose of a being denoted by a
T

These two equations will be basic for our further develop-
men ts. Let us solve (2-26) fo~r .~~. assuming M in v ertible ,

ç = M ’(A ~ — grad T) , (2-27)

and substitute into (2—25):

I + x
T
M
_ l

(A ~~ - grad T) =

- - ~~——--~~~~ ~~~—~~-rn - — 
-— -

~~~~~~ 
-

~~~



.- -.
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- ---- -. - - • - - - - - - - - - - -- - •, - --,-----— - - -
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or

T - I
TM

_ l
grad T = AW - y

T
M
_ l

A~~ . (2 -28)

On putting

rn = - (2—29)

we get

I + rn~ graci I = AW + rnTA.~ (2-30)

This  equat ion , w h i c h  h o l d s  on the telluroid ~ , consti-
tutes the fundamental boundary condition for the linearized
Molodensky problem. It is a generalization of the “fundamental
equation of physical geodesy ” (Heis kanen and Moritz ,1967 ,p.86),
just as (2—25) is a generalization of Bru ns ’ formula (ibid.,p .85 ).

Various Forms of the Boundary Condition. - Let us intro-
duce new coordinates q . by

q 1 = q 1 (x 1 , x2 , x 3)

q 2 = q 2(x 1 , x2, x3) (2—31)

q 3 = q 3 (x 1 , x2, x 3)

or briefly

q 1 = q .(x~) (2-32)

and let us assume that the inverse transformation

x~ = x~ (~~~) ( 2 — 3 3 )

_ _  -- ~~~~~~~~~~~~~~~~ - -~~~- • • •• --•- - -~~~~~~~~~~~---.• - -~~~~~~~~~~~~• - - a-~~~~~~~ 
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also exists. More specifi cally, we shall select q
~ 

to be the
cartesian component s of the normal gravity vector: 

- 
-

q. = y . = .
~
j— . ( 2— )

It is c lear  that o n e — t o — o n e  r e l a t i ons  (2—32) and (2—33) exist , at
l e a s t  in the sp atial vicinity of the earth’ s surface , so that the
quantities (2-34) may indeed be used as spatial curviline ar coor-
dinates.

The matrix M introduced by (2-19) and (2—20) may be
written as

-- 1
ay .1

(2—35)
L J

it is , therefore , nothing else than the Jacobian matrix of the
transformation (2-32). It is well known that the inverse matr ix

is then simply the Jacobian matrix of the inverse trans-
fo rmat ion  ( 2 — 3 3 ) :

M 1 = [
~
_
~
] . (2-36)

This may als o be shown directly: we have

ax 3y .
— 

j  
= 

1 ( 2 - 3 7 )a x 3 a lk al k

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- ..• —- -- • • • • -
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by the c l~ain ru le of d i f f e ren t ia l  c a l c u l u s ;  fur thermore

: 1  j f  I = k
a1 .

= 6
ik  =ç  ( 2 - 38 )

t~0 if i ~ k

for ins tance , c lea r l y

a 11 a1
— = 1  ,a1 1 a13

Therefore , (2-37) becomes

a 1. ax . = ~ik 
( 2—39)  -

which , by (2-35) and (2—36), is nothing but the equati on

= I (2-40)

in index notati on , I denoting the unit m atrix.
Now the vector rn , defined by (2—29), becomes in index

nota t ion :

m . = - , (2 41)

and we fur ther have

aTrn g r a d  T = ~~~~~ 

- •• -• - —— -- - -—- -- —-- -~~~~~~~~----- ~-- -~~~• -
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- 
aT a x .

- 
_
~

__
~~~

_ _ Y j
1 J

a
= — .5-:;;—— 1. , (2—42)

3

again be the chain rule. Hence (2-30) becomes

I - y . = f (2-43)

w h e r e  we h a v e  used the abbrevia tion

f = A W  + rnTA.9. . (2-44)

An even greater simplification is achieved by introducing
“quasi—spherical coordinates ” p, 4, A by

Ii = - 
~~~~~~ cos4 cosA

= — 
~~~~~~ cos4 sin x , (2—45)

13 
= — —

~~~p

Here ~ and A are normal latitude and longitude as before ,
because the vector y . i s  nothing else than normal gravity . The
c o o r d i n a t e  p is taken as positive. If the reference ellipsoid
b e c o m e s  a s p h e r e , t h e n  p becomes proportional to the radius
vec to r , as we sha l l  see be low , so that  p, 4, x become spherical
coord ina tes , h e n c e  the name , quasi-spherical coordinates. 

— ---
~~~~~
-

~~~~~~~~ ---- . -—--- -- - --~~~~~~~~~~~~~~ —--~~~~ --~~~~---- ~~~~ -•-—
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Now

!i. = .1L .._L~. ~2— 46ap a1 . ap ‘

again by the chain rule;

ay 1 2 2
= —i cos 4 cos x  = - — Iip

and , generally,

a 1. 
— — 

2.5_
~

__ 
~~~Y i

by (2-45). Thus (2-46) becomes

aT 2 aT
= - — 1..5 (2-47)

and (2-43) reduces to

p}’. + 21 = 2f (2-48)

It should be pointed that (2—48), in sp i t e  of i ts  s i m p l i c i t y ,
is r igorous ly  e q u i v a l e n t  to ( 2 — 3 0 ) ;  there is no fur t her a p p r o x i m a t i o n
i n v o l v e d .

What is the geometrical meaning of the derivative al /ap ?

According to the definition of a partial derivative , a /ap means

d i f f e r e n t i a t i o n  w i t h  respec t  to one coo rd ina te  p , the two other

coord ina tes  4 ,  A be ing  held cons tan t .  Th is  means d i f f e ren t i a t i on

~~~~~



- 
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a l o n g  a l i n e

4 = cons t . ,  A = const. (2-49)

S u c h  l i n e s  are called isozenithal s (with respect to the normal

gravity field ). The reason for th is name is that (4,x) may be
considered as the coordinates of the (ellipsoidal) zenith on the
c e l e s t i a l  sphere.  The i s o z e n i t h a l s  may a l so  be looked upon as the
l i nes  a long wh ich  the normal g rav i t y  vec to r  are a l l  pa ra l l e l ,
having the same directi on (2—49). If the plumb lines were straight

p l u m b  l i n e s

“ is oz e nj t ha l

I

I
I

I

e l l i p so i d

Figure 3

Plumb l i nes  and an i s o z e n - i t h a l

- ---__
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l i n e s , then the i s o z e n i t h a l s  wou ld  c o i n c i d e  w i t h  the plumb l i n e s ;
as the normal plumb line curvature is quite small , isozenithals
and plumb l i nes  are not very d i f f e r e n t .

In v i e w  of the fundamenta l  impor tance of our boundary
cond i t i on , l e t  us approach it from still another ang le. Let T de-
note the arc length of the isozenithal line , measured , e.g., from
the ellipsoid positive upwa rds (so that it represents the height
above the ellipsoid , measured along the isozenithal). Then a/a T
represents a derivative along the isozenithal , in the same way as
a / a p  - Therefore , these two derivatives , having the same direction ,.

can onl y d i f f e r  i n  s c a l e , t h a t  i s , they must be p ropo r t i ona l :

a _
~~~

a 2 5 0ar ap (

To f ind the p ropor t iona l i t y  fac to r  C we app ly  th is  equa t ion  to y

~1=  ~~~~ (2-51)aT ap

The r i gh t—hand  s ide can be e a s i l y  eva lua ted , s ince  by ( 2 - 4 5 )

2 1
I = Y

~ I~ 
=

p

1 = .L , ( 2 - 5 2 )

so that

(2-53)a p 3 p

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a n d

C = .ii : ~~~~~~ = - 
1 
~~ - (2-54)aT ap ~7 l a T

H e n c e , by (2 -50 )

p.
~— = - 2 ( 1 ~l)_ 1a , (2-55)

F and the boundary condition (2-48) takes the form

!~~i 1 =  ~~~1f - (2-56)a T  y a T  Ia T

The r i g h t — h a n d  s ide may be t rans fo rm ed as f o l l o w s .  By ( 2 — 4 4 )
we h a v e

f = A W  + niT A~ . (2-57)

• Let us have a closer look at the vector rn
To t h i s  e f f e c t , l e t

x = X ( r )  ( 2 58)

be the equation of the isozenithal . T h e n  t h e  v e c t o r

( 2 59)

w i l l  be the unit  tangent vec to r  of th is  curve  ( i t  w i l l  be a unit
vector since -r is the arc length). Then

L •~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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!
T g r a d  I = }L a~

_2:. = (2 -60 )

by the cha in  ru le .  Hence there f o l l o w s  from ( 2 - 4 2 ) ,  ( 2 — 4 7 ) ,  ( 2 - 5 5 )  -

•

and (2-60) :

rnT g r a d  I = - 1.

_ 1 aT
— p

~~ap

(l j~y 13T
y at at

= - (1 .~2L)~~ eTgrad I . (2-61)

Since the vec tor  grad I can have any d i rec t i on , there must be

rnT = - (
1~~~ )

1 T  
- (2-62)

Hence the vec to r  rn is tangen t to the i sozen i t ha l  ; s ince  T

• p o s i t i v e  upwards , the negat ive sign implies that rn is d i rected
downwards .

T h u s

rnTA~ = (
1 j

~~)
_ l

eT
A~~ . (2 - 63 )

N ow

= - A g ’ (2 -64)
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is nothing else than the componen t of the gravity vector A~ i n  t he
downward direction of the isozen -i thal . Sin ce this direction is very
near ly ve r t i ca l , A g ’ is a lmos t  equal to the usual  g rav i t y  anomaly
A 9 in the sense of Mo lodensky .

In view of (2-63) and (2—64), eq. (2-57) becomes

f = AW + (.1 }1y
lA g 1 , (2-65)

and (2-56) may be written as

- I I = - 
~~~~~ 

- -~~ ~
-

~~
- AW . (2-66)at ~ a-r ‘( a T

This form of the basic boundary condition is rigorously
equivalent to the pre ceding forms (2—30), (2—43) and (2-48). Though
it looks  l e s s  s imp le , it is very impor tant  because  it a l l o w s  a
compar i son  w i t h  the form in wh i ch  the boundary cond i t i on  for
Mo lodensky ’ s problem was usually presented earlier. Take , for
instance , eq. (8—24b) of (Heiskanen and Moritz , l967 ,p.300):

- I .4~ I = - A g - ( 2 - 6 7 )

Here the d e r i v a t i v e  a / a h  is taken a long  the normal p lumb line.
This equation involves certain approximations (cf. ibid. ,p.85),

• which are practically permissible but theoreticall y not rigorous.
It was the merit of T.Krarup to have shown that (2-67) becomes
theoreticall y exact if the direction of the normal plumb line is
rep laced by the direction of the normal isozenithal (the second term
on the right -hand side of (2—66) vanishes if the telluroid is
defined by UQ 

= W~, as u s u a l ) .
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The boundary condition (2—66) is valid on the telluroid ~
which is a known surface. The problem is to solve Laplace ’ s equation ,
AT = 0 , o u t s i d e  ~ w i th  the boundary cond i t ion  ( 2 - 6 6 ) .  S ince  the
isozenit hal is , in general , not normal to the surface ~ , we have
an obl ique d e r i v a t i v e  problem. Such p r o b l e m s  a r e  c o n s i d e r a b l y m o r e
d i f f i cu l t  than boundary -va lue  problems i nv o l v i n g  normal d e r i v a t i v e s ,
s u c h  as  S t o k e s ’ p rob lem.

Spherical A p p r o x i m a t i o n .  — If the re fe rence  e l l i p s o i d  is a
nonro ta t ing  sphere , then

= , (2-68)

where G is the gravitational constant , M the total mass , and r
the radius vector from the center of the sphere to the point under
consideration. The norma l gravity vector is then given by

= — I! (2-69)

where

cos 4 cOsA i
= cos 4 s inA  ( 2 — 7 0 )

sin 4

denotes the unit vector in the direction of the radius vect or , ~
and x being geocentric latitude and longitude. The quantitie s r ,

~, A are the usual spherical coordinates.

The c a r t e s i a n  components  of 
~ 

may thus be w r i t t e n  

~~~~~~ -•—~~~~~~~~- - ~~~~~~~~~~~
.—- ~~~~~~~~---• 
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1~ 
= - cos4 cosA

= — cOs4 sin A , (2—71)
r’~

13 
= — S~~ 4 -

The compar ison with (2-45) shows that now

p = r//~ i , (2—72)

so that p is r apart from a scale factor.
For the non-rotating sphere , the plumb line s , as well as the

isozenithals , coincide with the sp herical radi i. Thus , now

(2-73)

and

(2-74)
~ at y ar r

by ( 2 - 5 3 ) .  Hence ( 2 - 66 )  reduces to

I + .
~~ I = - A g + .

~~
. AW , (2-75)

equivalent to (2-48) but with the right-hand side given explicitly.
The bound ary-value problem expressed by Lap lace ’ s equation

AT = 0 (2-76)

~

---

~

-.-- .--—~~~~~- --- - -—- •- • -~~~~--- --- - --
~~~~~~~~~

- -- .-- . - _-----
~~~~
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and the boundary condition (2—75) in spherical coordinates has been
called by Krarup the simp le Mo lodensk y problem ; it is the one
considered in virtually all practical solutions of the geodetic
boundary value problem.

The reason is that , although the reference ellipsoid is not

exactly a sp here , its flattening is very small , about 0.3 %, so that
on tolerating an error of this order of magnitude in equations
relating quantities of the anomalous gravity field , for instance ,
in the boundary condition , we can formally use sphe r i ca l  boundary
condition even in the geodetic case of a reference ellipsoid. This
is the so-called spherical approximation ; for a more detailed
exp lanation cf. (Heiskanen and Moritz , 1967 ,pp .87—88).

As Krarup has pointed out , the spherical approximation may
be interpreted geometrically as the mapping of the actual point P
into an auxiliary point P by relating the quasi—spherical co-
o r d i n a t e s  p , 4, A of P to the spherical coordinates r ’ , 4 ’ , A ’

of P’ by

= p JGM , 4 ’ = 4 , A ’ = A . ( 2 7 7 )

This mapping would even be rigorous if also the Laplace equation were
transformed appropriately; the approximation amounts to the use of
the untransformed Laplace equation. The reader may find it interesting
to compare this with the ideas to be presented in sec. 8.

As we have a l ready  said , the simple boundary condition (2—75)
has been used in almost all practical solutions of the geodetic
boundary value problem. This is already true for Stokes problem , the
gravimetric determination of the geoid. In fact , for the reference
ellipsoid itself , which is , by the spherical approximation , mapped
onto the sphere r = R , we have w i t h  AW = 0 :

+ ~~
. T = - 

~g , . (2-78)

L -~~~-- • -~~~~ •.--- .---- ~~~- - ••-— -•--~- ~~•~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •• ~~~~~~~~~~~~~~~
.- . •
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which is the boundary cond i t i on  for Stokes ’ problem (Heiskanen and
Moritz ,1967 ,p.88). The solution is given by the well -known Stokes
integral

But also almost all practical solutions of Mo loden ;ky ’ s
problem presented and applied so far are based on the spherical
approximation , beginning with (Molodenskii et al ., 1962 ,pp.118-124):
solutions by Arnold , Brovar , Marych , Moritz , Pellinen and others.
For a review of them see (Moritz ,1966 and 1969). The el l ipticity
has been taken into account in work by Zagrebin , Mo lodensky,
Bjerhammar and Koch; Le lgemann has shown that the effect of
ellipticity on geoidal heights and deflections of the vertical is ,
in fac t , very s m a l l .

Let us , finally, mention that there are two senses in which
“linear ” and “ nonlinear ” are used in connection with Mo lodensky ’ s
problem . In theoretical work , such as the present report , “linear-
ization ” is with respect to_ the disturbing potential T or the
height anomaly ~ ; the neglected quantities are on the order of

— , 60 2
- _____

6.106/ —

which is certainly always negligible , the present accuracy being
higher than 10— 6 onl y in rare instances.

Hence , for practical applications , the “linear ” Mo lodensky
problem in the present sense is practically always sufficient. Higher
approximations and their convergence are , however , of basic import-
ance for a r igorous mathemat i ca l  investigation of the existence
and the uniqueness of a solution to Molodensk y ’ s problem.

The other sense of “linear ” and “ nonlinear ” is used in more
practically oriented work , with respect to terrain inclination
tan ~ , because the practical sol utions to M o lodensky ’ s problem
(it is usuall y the “ simple ” problem mentioned above) are based on

_ 
—-- .--- ,---
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a series expansion with respect to tan 6 . (It is in this sense
that “linear ” and “ nonlinear ” are used in (Moritz ,1966 and 1969).)
Since tan 6 may reach rather large values , “linear sol utions ”
in the second sense may be no longer adequate in mountainous areas.

3. HOrmander ’ s Linearization

As a preparation to his fundamental stud y of the nonlinear
t . lo lodensk y p r o b l e m , Hörmander (1975) first transcribes Krarup ’ s
linearization process into modern symbolic notation .

The purpose of this notation is to exploit , as much as
possible , the analogy between linear operators and ordinary linear
functions , between nonlinear operators and ordinary nonlinear
functions , etc. In this way it is possible , for i ns tance , to develop
d i f fe ren t ia l  ca l cu l us  in a un i f ied  way equa l ly  valid for functions
of one variable , for functions in n-dimensional space and for
functions in a Hu bert or Banach space (which are nothing else
than linear and nonlinear operators). One can also give implicit
and inverse function theorems that are equally valid for functions
of one or several variables and for nonlinear operators. This explains
the importance of such a modern notation for the geodetic boundary-
value problem.

The reader will find p~resentations of this “ modern analysis ”
in books such as (Dieudonné ,1960) and (Loomis and Sternberg, 1968),
the first being very clear but rather abstract , the second more
intuitive and accessible.

In this notation , vectors and functions are not distinguished
by no ta t ion  from ord inary  numbers.  V e c t o r s  w i l l  be w r i t t e n  simp ly
a or b instead of a , b (or of a ., b . in indices notation );
functions are denoted simply by f or g instead of f(x) or
g(u ,v) . Thus structural similarities between numbers , vectors 

~~~~~~~~~~ -•~~~~~~~~~~-—- --.- -- - • -----• ---—~~~-- —--- .--~~~~ ~~~~ - - - -~~-- •--~~~~~ --.
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and functions are stressed , but it must be specified at each instance
what these symbols really denote .

The following standard mathematical notati ons will also be
used:

R .. li ne of real num bers x , -

R 3... three—dimensional Euclidean space.

We also denote by a the unit sphere in R3 (we do not
use the standard notat ion , ~2 , to avo id  confus ion w i t h  the ear th ’ s
sur face S ). There i s

3 2 2 2a = { x€ R ; x~ + x2 + x3 = 1) , (3-1)

which means that the unit sphere is the set of all points of R
3

for which x~ + x~ + x~ = 1 holds.
The potential W is a function

3W : R -‘- R , (3—2)

which  means that the funct ion W ( x 1, x2 ,  x 3 ) a s soc ia tes  to each
point (x 1, x2 ,  x3 ) of R

3 
a n u m b e r , namely the va lue  of the

grav ity potential W at this point, and this number is an element
of R . In thi s sense , the function W does indeed map R

3 
into

R , mapping into R being under stood as associating a numerical
value (a rea l num ber).

The vec tor (x1, x2, x3) wi ll be denoted by x , so that
we may also wri te

W = W (x)

V(x) + 
1 2 (

2 
+ x~) , (3-3) 

—- ——— -~~~~~-~ 
• —• - -- .

~~~~~ -- - • - — - —-
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~
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where V is the gravitational potential and the last term the
potent ia l  of centr i fugal  force , ~ being the angu lar velocity of
the earth ’ s rotation.

The gravity vector g (no underlining! ) is the gradient
of W

g = W ’ , (3—4)

where the prime denotes differentiation; since x means (x1, x2,
x3) , it is quite natural that W designs the gradient:

w ’  = 

~~~ ~~2 
= g r a d  W . (3-5)

How can the physical earth ’ s surface S be defined in the
modern way? It is a mapping

S : a -+ - (3-6)

What does this mean? Nothing else than the usual parametric re-
resentation of S in terms of the parameters ~ (astronomical
latitude ) and A (astronomical longitude):

x 1 = S1 (~~,A)

x2 = S2(~~,A) , (3 7)

x3 = S3(~~,A )

where S1 , S2, S3 are certain functions of ‘7 and A , or briefly

x = S(~~,A ) . (3-8) 

.- --- - - - - -  ••.--•- — - --—•---- . --- ----- - - — -
~~~~

- • -
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In fact , • and A define a point on the unit sphere a (as we
know well from spherical astronomy !), and x 1 , x2 , x3 determine
a point in R 3 - We are purposely using the same symbol S for the
surface and its equation (3—7) or (3-8); the usefulness of this
notation will be seen later .

If the functions (3—7) are differentiable ( as will be
assumed ), then the mapping (3-6) will be dif ferentiable: the surface
S is a “differentiable embedd ing ” of the un - it sphere in R 3

On putting

= u~ , A = u 2 (3—9)

we can write (3-8) in the form

x = S(u 1 , u2) (3—10)

or still more briefly

x = S(u) , (3—11)

where

u = (u 1 , u 2) = (~~,A) . (3— 12)

In sec. 1 we have denoted the gravity potential of S (in
modern terminology, the restriction of W to S ) by TI
Clearly, TI is a mapping

TI : a ÷ R , (3-13)

• which simply means that TI , as a func ti on d e fi ne d on a sur face , is
a (rea l-valued ) functio n of the two surface parameters ~ and A 

.- .  ~~-- - - -—-  •-. -• - - -—- - -“-- - --~~~~~- • - -- ~~---.- --- -—  _ _ _ _ __ _ _ _
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de~ ining a point on the unit sphere a
In the same way , the restriction ~ of the gravity vector

9 to S is a function , or map p ing,

a -~- R 3 (3—14)

(R 3 because of the three components of 
~ 

).
How can we relate the surface restrictions TI and ~ to

their spatial counterparts W and g ? In usual notation we have

= W( S 1 (~~,A ), S2(’~,A ), S3 (c~,A ) )  * (3—15)

This means that this restriction to F is obtained by substituting
the surface equation (3-7) into the spatial function W (x1, x2, x3).
More briefly this is written

TI = W(S(u)) (3—16)

L 

It is thus a composite function of u , that is, of ~ and A
- T he mod ern no ta ti on for a compo sit e func ti on or “ f u n c ti on

of a function ”

f(~ (x)) (3—17a )

is

fo~ (x )  or fo~ (3-17b)

(rea d “ 0 ” as “ c i rc le ” or “compose d by ”), so t h a t  (3-16) may be
written

TI WoS(u) , (3—18) 

~~ -- -•~~~~~
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or briefly

TI = WoS . (3-19)

In fact , S is a mapping a + R3 , by (3-6), and W is a mappi ng

+ R , by (3—2), so that the composition of the two mappings

(read the right—hand side of (3-19) from the right to the left!) is

a mapping ~ ÷ R , as it should be by (3—13).
Now it is clear that similarly

= goS = W’ oS (3 -20)

(b~ 3 -4 ) .  I n  o ther terms , restriction to the surface S is
equiva lent to composition by the functional symbol S . This shows
the usefulness of the present notation , using S in both meani ngs.

Linearization. — To proceed with the linearization , we cons id er
5 , W , g, TI an d ~ as smooth (that is , sufficiently often differ-
entiable) functions of a parameter e . Le t  o = 0 correspond to

t h e  normal potential and to the te lluroid , and e = 1 to the

actual potential and to the physica l earth’ s surface.
In  o th er terms , let

x = S (u;e) (3-21)

denote a set of surfaces which depend smoothly on the parameter e ,

O ~ e < 1 . The l im i t i ng  sur faces of th is  set are:

x = S ( u ;0 )  ,.. te l lu ro id  ~ ( 3 — 2 2 )
x = S (u ;1 )  . . . ear th ’ s s u r f a c e  S ;

fo r  0 < a ~ 1 we get in termediate su r faces .  

—-- — - -— -— - - •.-_- .--- - -—-. - ------ — -.------ —- ---- --- — -—--‘-------- .—- -—— --- —
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Similarly, let

W = W (x;o) (3 23)

denote a set of gravity potential functions. The limiting functions
of this set are:

W = W(x;0) . . . normal potential U ; (3-24)
W = W (x;1) ... actual potential W

Final ly ,  l e t

TI = W(u;e) (3 25)

denote the res t r i c t i on  of W(x ; e)  to the sur face S ( u ; o )

W(u ;o )  = W (S (u;e);e) ( 3 — 2 6 )

The l imiting functions in this case are

TI = W (u;O)

which denotes the norma l grav i ty  potent ia l  U on the te l luroid , and

TI = W (u;1) ,

which denotes the actual  grav i ty  potent ia l  W on the phys ica l
ear th ’ s su r face .

S im i la r l y  we proceed w i th  the g rav i t y  vec to r

= i(u;e) ; (3—27)

_ _ _ _ _ _ _ _ _ _ _ _ _  - - ---
~~~~~~~~~~~~~~~~~~~~ -- ----- .~~~~~~~~~~~~-
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in this case

1(u;0)

denotes the normal gravity vector y on the telluroid and

~ (u;1)

denotes the actual gravity vector ~ on the earth’ s surface.
The differentiation with respect to a will be denoted by

a dot:

(3-28)

To establish the relation to the preceding sections we note
that AS in sec.1 corresponds to

A S = S(u; 1) — S(u;0)

= S Ae

according to Taylor ’ s theorem. However ,

= 1 — 0 = 1 , (3-29)

so that we get

AS = S = ~ . (3-30)

In o th er wor d s , S is nothing else than AS as used in sec.1; it 
-

a l so  equals  the vector  ~ g iven by (2- 15)  s ince for f i xed  u
S(u; 1)  represents , by ( 3 — 2 1 ) ,  the pos i t i on  vec to r  x of point  P
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and S(u ;O)  that of Q (F i g .2 ) .
• S im i la r l y  we get for the (vec to r )  grav i ty  anomal y

= .9. ear th ’ s s u r f a c e  
— X. telluroid

= ~(u;1) 
— 1(u;0)

a: gAO

or

= , (3-31)

• so that our former A~9. is nothing e lse  than i in the prese nt

notat ion.
Thus , l i nea r i za t i on  is now equiva lent  to d i f fe rent iat ion

with respect to the parameter 0

Let us f i rs t  d i f fe ren t ia te  TI as g iven by ( 3 - 2 6 ) :

TI (u ;e)  = W ( S ( u ; 0 ) ; 0 )  , ( 3 — 3 2 )

obta ined by subst i tu t ing  the surface equat ion

x = S ( u ; 0 )  (3 33)

into the spat ia l  exp ress ion

W = W ( x ; 0 )  . ( 3 — 3 4 )

S ince a enters into the r ight—hand side of ( 3 — 3 2 )  in two ways ,
di rect l y and a lso ind i rec t ly  through S(u ; o ) , we must apply the
c ha i n rule:

_ _ _ _  — - ----- - • -— ~~~~~~~~~~
-- - -
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T1 (u;e) = W ( S ( u ; o ) ; e )  +

+ <grad W ( S ( u ; e ) ; e )  , ~(u;o)~. . (3 -3 5 )

What does this mean? The f i rs t  term on the r ight-hand s ide denotes
the d e r i v a t i v e , w i t h  r e s p e c t  to a , of th e fun cti on W ( x ; o )
d is regard ing the dependence of x = S(u;o) on 0 . The second
term takes into account  p rec ise ly  this la t ter  dependence.  We thus
have to d i f fe ren t ia te  W w i t h  respect  to x , getting

W ’ = grad W (3-36)

and then x = S ( u ; e )  w i t h  respect  to a , obtaining

x = S(u;o) . (3 -37)

Now both grad W and ( 3 — 3 7 )  are vec to rs  in R 3 , and < , > i s  to

denote the inner product of two such vec to rs ;

<a , b> a 1b 1 + a 2b 2 + a 3 b 3

= a~ b~ (3—38)

in index notat ion.  In fact , the las t  term in (3-35)  might a lso  be
written in the more familiar index notation

— aW ax~
ax i. ax. aoi 1

— which expresses the usual chain rule.
After  hav ing c l a r i f i e d  the meaning of ( 3 - 3 5 ) ,  we omit  a l l

arguments but are carefu l  to dc~note r e s t r i c t i o n  to the sur face  S 

- -~~~~~~~~ — - ~~~~ . -  -
~~—-~~~ 
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= WoS + < W’ oS , 5>

= WoS + <goS , S> (3 -40 )

= WoS + <~~~, 5> .

In an analogous manner we get

g = ~o S  + < g ’ oS , 5> . (3-41)

W h a t  does  g ’ mean? We have

g = W ’ = g r a d  W = [ }~.] (3-42)

= W ” = [a~~~x
j ]  

‘ (3 43)

which is nothing else than the second—order gradient tensor. For
o = 0, W reduces to the normal potential U , so that then g ’ is
nothing e lse than the matr ix  Fl g iven by ( 2 — 1 9 ) ,  a n d  g ’ oS is
this matrix M taken at the surface of the telluroid. Note that
S here denotes S ( u ; e )  ; that is , any sur face between the te l lu ro id
( a = 0) and the ear th ’ s s u r f a c e  (a = 1) , inc lud ing these two
sur faces .

We must now f ind out the meaning of W and TI . Using
(3-29)  we have

W = WAO ~ W ( x ;  1) - W ( x ; O )

= W - U = T

so that

W = T (3-44)

- _ , - ..-

~

_ - - - - - - — — - - - .
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and W 0S means the d is tu rb ing  potent ia l  T at the sur face  of the
te l luroid.

On the other hand , TI means something different. We have

= a: W(u;1) - TI(u;0)

which is the difference between the actual potential W at the
earth’ s surface and the normal potential U at the te lluroid , in

other words , using the notation of sec.2 , the difference W~ - UQ
which by (2—3) is AW . T h u s

W = A W - (3-45)

We finall y have

g = a: g(x ; 1)  — g ( x ,O)

= g r a d  W - grad U = grad I . (3-46)

Let us now collect equations (3—30), (3—31), (3—44), (3—45)
and (3—46):

W = T

= g r a d  T , (3-47)

T h es e equa ti ons  form , so to s p e a k , part  of a d i c t ionary
that serv~ to translate formulas from the “old” into the new 
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notation and vice versa.
We thus wee that (3—40) is the “ translation ” of (2-25),

whereas (3-41) corresponds to (2-26).
We now proceed as in sec.2. We solve (3—41) for S

= (g’oS) 1 (~ - ~oS) , (3-48)

assuming that the “Marussi condition ” ,

de t (g ’ oS) ~ 0

is satisfied , that is , that the 3x3 matrix

M = g ’oS (3-49)

is invertible. This is always the case for e = 0 , for the normal
ellipsoidal potential U -

The substitution of (3—48) into (3-40) then gives the
desired boundary condition. We first obtain

TI = WoS + <goS ,(g ’ oS) 1 (~ — ~oS)> - (3-50)

Genera l ly  we have for 3 -vec to rs  a and b and for a 3x3 symmetr ic
mat r i x  C :

<a ,C b> = aTCb = bTCa =

= <b ,Ca> = <Ca ,b> , (3—51)

using matrix notation in between and taking into account the
symmetry of the mat r i x  C and a l s o  the symmetry of the inner
product < , > -

-- - - - -~~~ -~~~~~~~--- ---~~~~~~~ -- - - -~~~~~~~~~~~~ - -~~~~~~~~~ -~~~~~~~~ - - -  .-
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By means of th is formula , e~~. (3-50)  becomes

= W0S + < (g ’oSY 1 goS ,~ -go S> . (3-52)

We now put

m = — (g’Y 1 g (3—53)

This  3 — v e c t o r  m has a l ready been used in s e c .2 ;  c f .  ( 2 - 2 9 ) ;  it is
d i rec ted  a long the i s o z e n i t h a l .  Th us ( 3 -52 )  becomes

VI = WoS - <mo S ,j-~ oS >

= WoS - <mo S ,~ > + <m ,g>oS ; (3-54)

as oS means r es t r i c t i on  to S , there is

-c mo S ,~oS> = <m ,g>oS . (3-55)

On rearr anging we get

(W + -cm ,~ >)oS = TI + <mo S,~ > (3-56)

Let us differentiate

g(x;e) = grad W (x;e)

wi th  respect  to e - Since the d i f f e ren t i a t i ons  w i t h  respect  to
o and to x (g rad ien t )  are independent and can be in terchanged , we
get

I •
g = grad W . ( 3 — 5 7 )

____________________  
_ _ _ _
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Thus (3—56)  becomes

(W + <m ,grad W > ) o S  = TI + <mo S ,~~> . (3-58)

This  cond i t ion  d i f fe rs  from (2 -30 )  only by the notat ion;  c f . ,  i n

par t icu lar , t h e  “dictionary ” (3-47).
It is appropr ia te  to take the cen t r i fuga l  po ten t ia l  in

space as independent of the parameter o - Then only the purely
grav i ta t iona l  potent ia l  V depends on 0 , and W depends on 0

on l y t h r o u g h V . T h u s

(3-59)

and (3- 58)  takes the f inal form

(V + < m ,grad V >)o S = VI + <mo S ,~ > . (3-60)

This is the fundamental boundary condition in the form given to it
by Hörmander. .

Th e form (3-60)  c lear l y br ings out the fac t  that  T = V = W

is a “-~--m onic function , sa ti s fy i ng Lap l ace ’ s equation

0 . (3-61)

This  is less  obv ious  in (3-58) s ince V but not W is a harmonic
funct ion.

It -is very in te res t ing  to compare the equ i va len t  forms
(2 -30 )  and ( 3 -60 ) .  There is no doubt that ( 2 - 3 0 ) ,  its notations
and the opera t ions  lead ing  to it are much more f am i l i a r  to the
geodet ic  reader :  we a l l  know what  I and A g  are and are al l
familiar with vector and matrix operations.
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Equat ion (3—60)  and the opera t ions  lead ing to it are much -

more abs t rac t , apart  from being unfami l iar  to most geodesists at the
present time (w i l l  this change in the near fu tu re?) .  On the other
h a n d , t h e  new notation possesses considerable logical consistency and
r igor.  We need l ess  spec ia l  symbols ( no I , no ~ etc.), restriction
to a sur face is c lea r l y  expressed , and d i f f e ren t i a t i on  w i th  respect
to 0 r ep l a c e s  A and other differences. It is sufficient to look
at (3—47); note how clearly the new notation distinguishes between
T = W - U  and A W = W ~~

_ U
Q

Fur th ermo re , (3-60) is formulated in terms of derivatives
wi th  respect to e , rather than in terms of approx imate f in i te
differences. In the new notation it i s  o b v i o u s  t h a t  w e  h a v e  l i n e a r —  

I

i za t ion  wi thout  app rox ima t i on ;  th is is less  ev iden t  in the usual
notation. This fact makes it poss ible to linearize not only at
o = 0 (which would be the first stage), but also at any intermediate
a , 0 < 0 < 1 . (To repeat , S in (3—60) and similar equations
denotes S ( u ; e )  for any 0 between 0 and 1 , i n c l u d i n g  0 = 0
( t e l l u ro id )  and 0 = 1 (earth’ s surface).) If we linearize at a = 0
a n d  t a k e  A0 = 1 , then (3-60) reduces , in fact , to (2-30), but it
is v a l i d  for l i nea r i za t i on  at any 0 and is thus much more generally
useful: linearization means here simply differentiation.

In  f a c t , it is the form (3-60)  wh ich  permits the method of
successive approximation , starting at a = 0 and tak ing consecu t i ve l y
a c loser  and c lose r  to 1 , which will be outlined in sec.5.

4. Existence and Uniqueness of Solution
for the Linear Mo lodensk y Problem

We shal l  now i nves t i ga te  the e x i s t e n c e  and uniqueness of the
• so lu t i on  of the l inear Molodensky problem. As an in t roduct ion we

examine fi rst Stokes ’ p r o b l e m  a n d  t h e  “ s imple  Molodensky problem ” ,

_  •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
• •
~~~~~~~~~~~~

.
~~~~~~~~~~~~~~~~~~~~~
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following (Moritz ,1971 ,pp.27-31),before considering the general
linear problem foll owi fl g (Hormande r, 1975 ,chapter I).

The Problem of Stokes. - Stokes ’ problem is the boundary-
va lue  problem in i ts s imp les t  form: g iven the g rav i ty  anomaly on
a s p h e r e , to determine the anomalous  po tent ia l  I on and ou t s i de
the  sp h e r e , assuming T to be harmonic outs ide this sphere.  T h e

correspondin y boundary condition is (2-78); since the radial direction
is normal to the bounding sphere , the o b l i q u e - d e r i v a t i v e  prob lem
reduces in this case to a problem involving normal deri vatives ,
wh ich  is much s impler .

The s o l u t i o n  is g iven  by S tokes ’ in tegra l  formula

T ( o ,A )  = T0 + .
~ ..ffAg S (iP)da + T 1 (O ,A )  , (4-1)

which  exp resses  I on the g iven sp here in terms of A g  on th is
sphere .  Here I

~ is a f i xed  cons tan t  re la ted  to the mass of the
earth , and

T 1 (0 ‘A )  = A 1 siri0cosx + A 2 s in o s inX  + A3 cose (4—2)

— 

is a spher ica l  sur face harmonic of the f i r s t  degree.  Po lar  d i s t a n c e
0 and long i tude A are spher ica l  coo rd ina tes , a n d  A 1 , A

2
, A

3 
are

arbitrary constants which have the following physical interpretation
(He iskanen and Mor i tz ,1967 , p .99 ) .  Let 

~~ ~~2 ~ 3 
denote the

rec tangular  coord ina tes  of the ea r th ’ s center  of g rav i t y , the o r i g i n
being the center of the e l l i p s o i d .  T h e n , a p p r o x i m a t e l y ,

A~ = , (4-3)

w h e r e  ~ denotes a mean va lue  of g rav i t y  over  the ear th .  The re fore ,

L - - ~~~~• ~~~~~
. .

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ • ~~~~~•.
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nonzero A . mean that the center of the reference ellipsoid does
not coincide with the earth’ s center of mass.

A necessary  and s u f f i c i e n t  cond i t i on  for S tokes ’ p rob lem
to be solvable for continuous boundary values is that the function

~g does not contain spherical harmonics of the first degree. In
other terms , ~g must be orthogonal to any harmonic function of the

first degree Y 1 (0 ,A )

f f A g ( o ,A ) Y 1 (e ,x )da = 0 ; (4—4)

cf. (Heiskanen and Moritz ,1967 ,p.97). Since Y 1 (e ,A ) contains

three constants , this equation comprises , in fact , three independent
conditions.

The solut ion (4—1) contains three free constants A 1, A 2, A 3
The solution can be made unique by putting all A~ = 0 , which means

that the first-degree harmonic (4—2) vanishes.
The fac t  that Ag must s a t i s f y  three cond i t i ons  and that

- the solution (4-1) contains three free constants expresses the
so-called Fredhoim alternative ; see below.

It should a l so  be po in ted out that  a s o l u t i o n  ( 4 — 1 )  w i t h
A 1 ~ 0 ~ A 2 , is p hysically impossible , although it is mathe-
matically valid as a solution of the boundary-value problem defined
by AT = 0 outside the sphere and by the boundary condition (2-78)

on the sphere.
In  f a c t , for I to be harmonic and zero at infinity , t h e

centrifugal potential contained in both W and U must be equal ,
so as to drop out in I = W - U . This requires that the axis of the
re fe rence e l l i p s o i d  c o i n c i d e s  w i t h  the ea r t h ’ s a x i s  of rotation.
If this common axis is taken as x 3 a x i s , then the centrifug al

potential is 

•- - . ~~~~-- --- -— ----- -- --- - . - --~~~~~~~~~ --- -
~~~
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1 2 (x 2 
+ x~) . (4—5)

Indeed , if the two axes were only parallel and separated by the
vector

(~ x 1 ,~ x2 ,0)

then T would contain a term

+ x 26x 2) (4—6)

due to the difference of the two centrifugal potentials; this term
and therefore T , would not be zero at infinity . The same would
hold if the two axes were not parallel.

So the two rotation axes must coincide. Since the earth’ s
rotation axis passes through the center of mass for physical reasons ,
and since the axis of the ellipsoid contains the center of the
ellipsoid for reasons of symmetry , both centers must lie on the
common axis , which is taken as the x 3 coordinate axis. This implies
that the two centers can differ only in the x 3 coordinate , so that

and 
~ 2 

, and therefore A 1 an d A 2 by (4-3), must be :ero.
Thus , if a solution (4—1) -i s to be physically meaningful ,

only A 3 can differ from zero , so that the solution for a rotating
earth has , in reality , only one degree of freedom. Since A 1 = A 2 

= 0
it is quite natural to take also A 3 = 0 , thus letting the center
of the reference ellipsoid coincide with the earth’ s center of mass.

The Simple r-4olodens ky Problem. - This is the linear Mo lodensky
problem for a spherical reference surface (sec.2). We shall prove
existence and uniqueness of the solution for this prob lem by
establishing a one—to—one correspondence between the Stokes problem

L

and the simple Mo lodensky problem. 

-----
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Let us consider the te l lu roid ~ , on which the boundary
condition (2-75) is defined , together with a sphere S’ concentric
to the reference sphere and such that ~ is completely inside S’
( F ig . 4 ) .  This sphere 5 ’  might be called Bri ll ouin sp here , after
the French scientist who proposed gravity reduction to a level sur-
face completely outside the earth .

The function

F = rAg (4 7)

is well known to be a harmonic function in space , r being the

Br il lou in  sphere 
~
, 

~
,

S RH 
-

r

t e l l u r o i d

F i g u r e  4

The Bri l lou i n Sphere

________ —- .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •
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variable radius vector of the point under consideration (ibid.,p.9 0).
As the boundary va lues  of ~g , and hence of F , are g i ven  on
the surface ~ , we can compu te F , and hence ~g , at every
point outside ~ by solving an external Dirichiet problem , which
is uniquely solvable for continuous boundary data (cf. Ke l logg, 1929 ,
p .314). In particu lar , this gives Ag at every point  

~r 
between

the surfaces ~ and S --to be denoted by Ag (r) —-and on the
Br il l ou in  sphere i t s e l f — - t o  be denoted by Ag ’

From the va lues  of A g a long a radius it is s t r a i g ht forward
to compute radial differences of the potential I : by (Ileis kanen

and Mor itz , 1967 , p. 92) we have

= - r2A g (r) , (4-8)

which  on in tegra t ion  g i ves

(r2T)~ - (r 2I)~ , = fr
2Ag(r)dr (4-9)

P

or with the symbols of Fig.4 ,

R
B

r~I — R~T’ = fr
2Ag(r)dr (4-10)

I denoting the potential on the telluroid and I’ on the Bril l ouin
sp here.

Now we can so l ve Molodens ky ’ s problem by the following three
s teps :

1. Computat ion of A g ( r )  and ~g ’ by s o l v i n g  the externa l
D ir ich le t  problem.

_ _ _ _ _ _ _ _  
- • - - ~~~ ----— -~~
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2. Determinat ion of I’ from Ag ’ by so lv ing  Stokes ’
problem for the sphere S’

3. Computation of I at ~ f r om  I ’ at 5’ by (4-10).

Ste ps 1 and 3 are one —to-one  because D i r i ch i e t ’ s prob lem L
uniquely s o l v a b l e  and because d i f fe rent  func t ions  A 9 on corre-
spond to d i f ferent  func t ions  Ag ’ on 5’ and v i ce  ve rsa .  T h u s  t h e

question of solvability of Molodensky ’ s problem for the telluroid

~ has been reduced to the question of solvability of Stokes ’ problem
for the sphere S ’  , to which the answer has been given above. For
the simp le Molodensky problem , therefore , we have exactly the same
situation concerning existence and uniqueness of solution as for
Stokes ’ problem: Ag must satisfy three conditions , which may be
expressed in the form , analogous to (4-4),

ffA g ’(e ,A )Y 1 (o ,x)da = 0 , (4-11)

which  means that the upward con t inua t ion  of Ag to S ’  must not
contain any first—degree sp herical harmonic.

Corresponding to these three cond i t ions , the so lu t i on  for
T’ , and consequently also for T , will contain three free
cons tan ts  ( th is  is true if the l inear boundary va lue  prob lem is
cons idered in i t se l f ;  for phys ica l  reasons , two of these cons tan ts
must be z e r o ) .  A gain we get a unique so lu t i on  by requ i r ing the
spat ia l  funct ion T to have a form that con ta i ns  no f i r s t -deg ree
spher ical  harmonics.

The Linear Molodensky Prob lem. -  The general  l inear
M o l o d e n s k y  p r o b l e m  f o r  an  arbitr ary reference surface for an arbi-
trary reference potential , as formulated in sections 2 and 3, i s an

• o b l i q u e - d e r i v a t i v e  problem.
T h e  c l a s s i c a l  b o u n d a r y  value problems --the Dirichiet problem

and problems i n v o l v i n g  norma l d e r i v a t i v e s - - c a n  be formulated in terms

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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of Fredho lm i-~teg ra l  equat ions  of the second k ind , and the we l l -
known Fredholm alternative holds (cf. Ke ll ogg, 1929 ,p.298):

If the homogeneous boundary—value problem has no non-zero
solution , then the corresponding nonhomogeneous problem is solvable
for arb i t rary cont inuous boundary v a l u e s .

If the homogeneous problem has n independent solutions ,
then the boundary va lues  must sa t i s f y  n independent conditions for
the cor respond ing  nonhomogeneous problem to be solvable , and the
solution depends on n free parameters (because of the n inde-
pendent solutions of the homogeneous problem ).

An example is furnished by Stokes problem , in which n = 3 -

An analogous formulation of the oblique—derivative problem
leads to singular integral equations for which the Fredholm alter-
native is , in general , no longer valid. An example is Mo lodensky ’ s
integral equation which is no longer a Fredhoim equation of the
second kind (contrary to what is sometimes said in the literature).

Howev er , if the obl i que—derivative pro blem is regul ar , that
is , if the direction of the derivative is nowhere tangential to the
boundary surface , the Fredholm alternative is still valid , in spite
of the singularity of the corresponding integral equation; cf.
(Miranda ,1970 ,p.86); this means that the number of conditions on the
boundary data f , given by (2-57), is equal to the degree of
f reedom in the so lu t i on , say n

In the simple Molodensk y problem we again had n = 3 . In
the present general  l i near  case , n must be at l eas t  three , i n  v i e w

of the three degrees of f reedom in the spa t i a l  sh i f t  of the o r ig in ,
but perhaps n = 4 or 5 ?

Hörmander proved that even in the general form of the
linar Molodensky problem n equals 3 . First , the p roblem defined
by (3-60) and (3-61) is reformulated as follows , putting

_ _ _  - - - - -~~~~~~
--.- -
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V = T , (4 — 12)

V + cmo S ,~ > = f (4-13)

( the same no ta t ions  were used in s e c . 2 ) .  It thus h~ r.omes: to determine
a funct ion T sa t i s f y i ng

1. Harmonici ty : AT = 0 outs ide S . (4- 14)

2. Boundary condition on S

(I + <m ,grad I>)oS = f . (4-15)

3. No f i r s t -de gree  harm onic :

T ( x )  = .
~~~ + 0(1.3.) , r + , 

- 

(4-16)

c being some cons tan t .

Hörmander proved that the corresponding homogeneous p roblem , that
is , (4-14), (4-15) and (4-16) with f 0 , has the unique so lu t ion
T 0 . The general  so lu t ion  of the homogeneous problem , w i t h o u t
imposing (4 -16) ,  therefore conta ins  the three inde pendent spher ica l
harmonics of degree 1. This proves that n = 3 a l so  for the general
l inea r Molodensky problem (if n were >3 , t h e  s o l u t i o n  of
(4— 14) , (4—15) ,  (4— 16) would no longer be un ique) .

The p r inc ip le  of the Hörmander ’ s proof of un iqueness may be
i l l us t ra ted  by the cor responding proof for Stokes ’ problem. Take
L a p l a c e ’ s opera t ion  in spher ica l  coord ina tes  r , 0 , A ( c f .  He is Kanen
and Moritz ,1967 ,p.19):

AT = ~~~~ h(r2}
~

) + 
2

1 !_(sino}~) + 2
1

2 !4 (4-17) 

~~~---— ~~~~- -~~~ ,--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Let us form the integral

3 = fff 2r}~.ATr
2sjnedrd 6dA (4-18)

r >  1

over the ex ter io r  of the reference sur face , which  we ident i fy  w i t h
the unit sphere a by choosing the rad ius as unit of length .  S ince
Al = 0 outside a , this integ ,~al will be zero:

J = 0 . (4-19)

Let us eva lua te  the integral  using (4 - 17) .  We get

= + + 
‘ (4 -20)

w h e r e  t h e  J~ correspond to the three summ ands on the r ight -hand
side of (4-18) .  We shal l  a l so  use the abb rev ia t i ons

dv = r 2 s inedrd odx ( 4 — 2 1 )

for the volume element and

da = sin od odx (4-22)

for the surface element of a , so that

dv = r 2
drda . (4-23)

With  these nota t ions  we have 
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= f f f 2 r - ~
_
~ 
.L

= fff2r~~ }F(r2f~)sinedrd odA . (4-24)
r >  1

There is

= 2rT + r2T

w h e r e  Tr denotes a l/ a r  as usual , a n d  f ur t h e r

2r!L .L(r 2!I) = 4r2T~ + 2r31 Tar ar ar r r r r

= 4r 2 T 2 
+ r3}~.(T

2) ,

so that

f2rI f_ (r 2 T ) d r  = 4fr 2T2dr + fr 3f-(T2)dr . (4-25)

The las t  term is t rans formed by par t ia l  in tegra t ion :

fr 3}_(T2)dr = (r3T2) -  (r 3T2) - f3r 2 T 2 dr (4 -26)  

- -~~~~~-- -~~~~~--~~-“- - ---- - - - - -~~~~~~~~~~~~~~~~~~
-— -—--- - --

~~~~~~~~
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The f i rs t  term on the r ight-hand side is zero  s ince  = 0(r 2
)

in the second term we have r = 1 , so that on subs t i t u t i ng  th is
express ion into (4 -25)  we get

f2rT f~(r
2I )d r = 7r

2 T 2 dr - (T 2) 1

On mu l t ip ly ing  th is equat ion  by da and i n teg ra t i ng  over a
tak ing (4 -23 )  into account , we get for ( 4 - 2 4 ) :

= fJfI
2dv - ffT

2da . (4-27)

Now we compute J 2 . In v iew of (4 - 17)  and (4-18)  we have

= Jff2rT 2 
.(sin eT )dv

r > 1  r sine

= fff2rT h (sinol0 )drd edA (4-28)
r>1

Let us first perform the integration with respect to 0 . By
partial integration we get

f a rT  h si n eT e )d o = (2rl sinel 0 ) 0 -

- ( 2 r T r Sin OI 0 ) e - f2rl sino T de
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= — J2rI T s in e d erO 0
0

= - f r .~-~- ( T ~~) s i n e d e

Thus (4-28) becomes

= — fffrh (T~
)drsin ededx . (4—29)

r > 1

The integ ral with respect to r is agai n transformed by partial

integration:

- frh(I~
)dr = (T

~ )~~~ 
+ fI~dr

We mul t ip ly  by do and in tegra te  over a , obtaining in view of

(4—23):

= f f f 1
~ T~ dv + f fI~~~~da . (4-30)

r > l r  a

The in tegral  3 3 is t rans formed in e x a c t l y  the same way
as  

~~2 
with the result

12

= 
~~~ 2 2 

I~ dv + j~~ 

A do , (4—31)

r> lr s in 0 a sin 0

- - .~~~- .~~~~~~~--~~~~~-
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and we are through .
We o n l y  h a v e  to c o l l e c t  (4-a7), (4-30) and (4-31) and to

• take (4-19) and (4-20) into account. The res ult is

- - f f f ( 1 2 
+ 1- T~ + 2 . 2 

T~~) d v  +
r > 1  r r sin 0

+ f f ( T ~ + 
si~~20 

T~ )d~ - f f l
2 da = 0 . (4-32)

Now 1 is nothing else than the radial component of the gradient
g r a d  T , and

-1
1
1 

_ aI
i~~o i ~~

(4 33)

1 1 -  aT
rsin e A 

— rs ine aA

are its horizontal , or tangential , components , the total tang ential
component having the squared magnitude

I~ = ~~~ I~ + 2 . 2 
T
~ 

. (4-34)
r r sin 0

Thus (4-32) may finall y be written

fffl grad T~
2dv + JJ (T~ - I~ )da = 0 (4-35)

_ _ _  _ _  
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By means of this formula we can prove stability for Stokes ’

problem as follows . The boundary condition (2-78) becomes for the

homogeneous prob lem (Ag = 0) with R = 1

+ 21 = 0 , (4-36)

from which we get

T
r 

- 2T on ~ . (4 37)

If T on the sphere a is expa nded into a series of Laplac e ’ s

surface harmonics,

T ( e ,A )  = ~T (e ,A ) , 
- 

( 4 - 3 8)

then

f f T ~ da = ~n ( n+ 1 )f f T 2 dc~ ; (4-39)

a o a

cf . (Molodenskii et a l ., 1962 ,p.87). Furthermore , by (4-36),

f f l
2 da = 4 f f T 2 da =

= 4~ffT
2da , (4-40)

0~~

because of the orthogonality of the spherical harmon ics.

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Since the f i r s t  term in (4-35) can never be neg ative , there
must be

f f (T 2 
- T2 )d ~ ~ 0 . (4-41)

This equation is intere sting in itself , s i n c e  i t  s h o w s  t h a t  t h e
average square of the horizontal grad ient will always be sm aller
than (or equal to , but onl y for I 0 ) the average square of the
vertical gr adient; this is ob viously true for a spher e of any radiu s
R

Here we sh all use (4-41) for the proof of uniqueness. We
substitute (4-39) and (4—40) and obtain

~ [n (n+i) - 4]ffT 2do 0 . (4-42)

The coefficients with in brackets are positi ve for n = 2 ,3 ,4 , -

So if we can show that I 0 for n = 0 and n = 1 , then all
other 1 mu st also be zero if (4-42) is to hold .

For n = 1 we have , in fac t , T
~ 

0 because of (4-16).
From the well —known spherical—harmonic rel ation (cf.Hei skanen and
Moritz , l967 ,p.97)

I = i~
i-
~
-i
~ ~

g ( 4 - 4 3 )

we get for n = 0 and R = 1

I = - A g  = 0
0 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. 

~~~~~~~~~~~ 
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because ~g is identically zero , for the homogeneous Stokes problem.
Thus we have proved that

T 0 (4-44)

is , indeed , the only solution of the homogeneous Stokes problem if
(4-16) is prescribed .

Of course , this proof is cons ide rab ly  more in volved than the
simp l e  reasoning concerning Stokes problem using sp herical harmonics ,
as presented at the beg inn ing  of th is  sec t i on .  The essen t i a l
advantage of the quadra t i c  cond i t ion  (4—35) is , however , that it
can be generalized to the linear Mo lodensky problem.

Th is  has been done by Hörmander. His proof is , however ,
extremely involved and laborious and cannot be given here. Even

• his uniqueness theorem (Hörmander , 1975 ,pp.22—23 ) is so complicated ,
involving many expressions and parameters , that it cannot be
reproduced in the present report.

Let it be sufficient to mention that Hörm ander ’ s theorem
conta ins a number of parameters wh ich  depend on p roper t ies  of the
ear th ’ s topograph y. Larger s l o p e s  of the terrain (say 600) are
permi t ted prov ided they do not occur  too frequently. Althoug h a
de ta i l ed  study of f i t t i ng  Hbrmander ’ s parameters  to the ac tua l
ear th ’ s topography has not yet been made , it appears  that the theorem
is general enough to ensure the uniqueness of solution of the linear
Molodensky problem , with an ellipsoidal reference field , for the
actual topography of the earth , the existence of a solution being
g e n e r a l l y guaran teed  by the theo ry of the ob l ique  d e r i v a t i v e  o robler n .
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5. Nash — Hörmander Iteration

In sec.1 we have outlined Newt on ’ s method , which is widely
used in advanced implicit and inverse function theo rems of nonlinear
functional anal ysis; cf. (Sternberg, 1969).

In his treatment of the nonlinear Mo lodensky problem ,
Hörn iander (1975 ,chapter II) used a different ite ration method ,
which is a discrete scheme analog ous to a continuous method used by
Nash ( 1 9 5 6 ) .

The essence of the two methods is illustrated by Figures 5
and 6. The problem in both cases is the same: consider a function

y = ~(x) , (5—1)

which can simply be a function of one variable , as shown in the
figures , or a nonlinear operator mapping, for instance , one Banach
s p a c e  X into another Banach space V , so that

X -‘- V . (5-2)

Given the value ~(u) of ~ at some unknown point x = u , to

determine u -

We p r o c e e d  as  f o l l o w s , w r i t i n g  the fo rmu las  for the s im p l e
case of an ordinary function of one variable; the Banach space case
is f o rma l l y  qu i te  the same.  We ass ume an app rox ima te  v a l u e  u for
u and compute ~(u) . The further procedure is different for the
two methods.

In  N ew ton ’ s method (Fig.5) we intersect the tangent at

~( u )  w i t h  the l ine

y = ~~u) = const. (5—3) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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y — • (x )
• ( u)/

•(u) ____ ~~~~~~~~~~~~~~~~~~~~~ -~~ : ~~

— _ _ _ _ _ _ _ _

U0 u u2 U
1

Figure 5

Newton Interation

y
•(u)

Y - .(x J~~~~~ 
f

U0 U
1 

U
2 

U
3 

U

Figure 6

Nash- Hb rmande r Iteration
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para l l e l  to the x - a x i s ;  th is  l ine  is known because  ~(u) is give n.
In  th is  way we ob ta in  u1 a n d  c a n  c a l c u l a t e  q ( u

1
) . The tangent

at ~(u 1 ) is again intersected wi th the line (5—3), and the proce-
dure is repeated. The sequence u , u 1 , u 2 , . . . tends to u provided
the iteration converges.

In the Nash-Hö rmander scheme (Fig.6) the known difference

f = ~(u) - 

~(u) (5-4)

is split up in a suitable way into a convergent series:

f = f + f + + = (5 5)

• The tangent at ~(u) is now intersected w ith the line

y = ~(u) + f = cons t . ,  ( 5 -6 )

which gives U
1 

. The tangent at ~(u 1 ) is intersected with

y = ~~u )  + f + f 1 = c o n s t . ,  ( 5 - 7 )

which gives u 2 - The procedure is indefinitely repeated.
The respective iteration procedures are illu strated in the

• figures by heavy lines with arrows. The comparison of the two
figures already gives an indication that the second iteration
scheme may have certain advantages over Newton ’ s method. For instance ,
in the Nash -Hörmander scheme , the u 1 increase more or less

• monotonica ll y to u , whereas in Newton ’ s method u 1 may be “way
out ” (Fig .5). In the second scheme we have , approximatel y,

U
k l  

- u~ = 
[~

‘(u k)l ~k 
(5-8) 

- ----- - - - -- • -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- -

S

66

so that the convergence of the a p p r o x i m a t i o n  can be con t ro l l ed
almost arbitrarily by suitably selecting the terms in (5-5); in
t h e  N e w t o n  m e t h o d , the convergence  is quadra t i c  acco rd ing  to (1 -22 ) .

T h e formu l as for N ew ton ’ s method have alread y been given in
sec.1. In the sequel we shall be concerned exclusively with the
Nash-Hörmander i te ra t ion .  From F ig .7  we read o f f :

~k—1 
= •(uk) 

— 

~
(uk l ) 

— h
k l  ‘ (5 9)

hk = — 

~~k — 1  
(5—10)

= 1p (u k)h k , (5—11)

• U k+ l  
= U

k 
+ . (5—12)

y

— 

jjj1j
~~~~~~~~~~~~1k 1  

~~U k_ i  U
k Uk+i

F i gure 7

The iteration scheme

_ _ _ _ _  
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• Here we have put

- 

~
(uk) = 

[~
‘(uk)l , (5-13)

w h e r e  ~~~~
‘ d e n o t e s  t h e  derivative with respect to u . Geometrically,

is the error due to non l inear i ty  of the funct ion  ~ ; it is the

• “ height of the s teps ” in Figures 6 and 7.
Accord ing  to F ig .6  we s ta r t  our i te ra t ion  w i th

h = f (5-14)

by (5- 10): sin:e there is no error to start with. Then , by

F (5—11) and (5—12),

= ~,(u )h , (5-15)

u = u + ~ , (5—16)
1 0 0

Next we put k = 1 in (5—9) through (5—12 ), obtaining

e = ~(u ) — ~(u ) - h
0 1 0 0

h = f  - c1 1 0 (5—17)
-
• = ~,(u1 )h 1 ,

u 2 = u 1 +

- 

The procedure in repeated w i t h  k = 2,3,...

L _ _ _ _ _ _ _ _  

-
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An essential feature of the scheme just described is that
th e e r r o r  C k_ 1 committed at the (k-1)th step is taken into
account and corrected at the next step by means of (5-10).

• Unfortunately, this very simple iteration scheme cannot be
• proved to converge for the Molodensky problem. Therefore , Nash and

Hörmander introduced a suitable smoothing process , which also
provides a natural determination of the terms in (5-5).

Let us introduce a sequence of smoothing operators S0, S 1,
• 

~~~2 ’  - , in such a way that

l im Sk = I , (5—18)

• ~.j
L.ere ~ denotes the unit operator; in other terms , if 5

k~~~ 

is the
result of applying the smoothing operator Sk to a function f
t h e n

lim 5
k~~~ 

= ~ (5-19)

so for increasing k , the smoothing becomes less and less. (There
is hardly any danger to confuse the smoothing operator Sk with
the boundary surface S !)

To have a simp le example , let us take a harmonic function f
which is developed into a series of spherical harmonics:

~ V (o ,A )
f = (5—20)

n+ 1n=o r

and take

1 O + kV  (o ,x)
C t  V fl

— L n-s- i ‘ 
-

n= o  r 

-_
~~~~~-~~~~~~ -_ - — - - ---- -~~~~~~~~ - - --• • - -~~~~~~~ • _ - - _ 
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so that smoothing is obtained by truncating the spherical harmonic
series or , what is the same , truncation of the spectrum. For
instance ,

10 V ( e ,A )
C t  V ‘~— L n+ 1n=or

11 V (e ,x)
C -C V ‘~— A n+ 1n=o r

etc.; it is clear that (5-19) is satisfied.
The reason for i n t roduc ing  a smooth ing in Mo lodensky ’ s

problem is the following. It is a well—known difficulty with many
higher order solutions that the higher order terms are getting
rougher and rougher. This is the case if an iteration involves
differentiation: the derivative is almost always less smooth than
the original function. A case in point is the well—known Mo lodensky

• series for solving the simp le (linear) Molodensky problem. The
calculation of higher order terms proceeds through an iteration
which involves successive differentiation , with the result , that
higher order terms can no longer meaningfully be computed from
empirical gravity data.

The Hbrmander iteration for the non-linear Molodensky
problem has to strugg le with a similar difficulty : assume we have
an approximate solution for the potential W(x;o) according to
(3—34). The calculation of the isozenithal vector in , which is
required for the boundary condition (3-60), requires the calculation
of the m a t r i x  (3-43), involving two differentiations. So we “ lose ”

two derivatives at each iteration , the functions involved will get
• rougher and rougher , a n d  the iteration will probably ub lo w up ” .

Therefore , we must counteract this loss of derivatives by

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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a su i t ab le  smoothing, taking car e , however, to successively reduce
the amount of smoothing so that (5-19) is satisfied: otherwise we
would not , in the limit , obtain the right result .

Furthermore , the smoothing operator Sk gives us a natural
way of obtaining the terms in (5-5): we put

f = S f , (5-22)
0 0

= (Sk - Sk l ) f  = Skf - Sk_ l f , (5-23)

k = 1 , 2, 3 , .

In fact ,

= [s0 + - S )  + 
~~~~ 

- 5 )  + ~~~~~ + (S - S~~ 1)] f

= S f  , (5—24)

and

= u r n  S f  = f (5-25)

by (5—19), so that (5—5) is satisfied.
Now our problem is to m odify the iteration equations (5-9)

through (5-12) to take smoothing into account. First of all , take
equation (5-11). It is easily seen to correspond to the solu tion
of the linearized problem in the k-th step, as 

~L’ involves the
linearized operator ~~

‘ through (5-13). Thus it is there where loss
of der i va ti ves occurs , and smooth ing is appropriate. Hence , instead of
computing ‘L’ at U

k 
, we compute it at

vk = Sk uk , (5-26) 

- - - •• • -_ • -~~~~~~~~~ -~~~~~~~~~~~~~ ----
---_ —- -  
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and (5—11) is replaced by

6
k 

= ~(v~ )h~ . (5-27)

Next , consider  ( 5 — 1 0 ) .  The t e r m  
~k 

is already smoothed , being
defined by (5—23), but £k i  

is not , being given by (5-9) which

i nvo lv es  
~
(uk) and 

~~
u

k l ) . The obvious t h i n g  would be to replace

ck l  
by SkE

k i  
, but this will not work , as we shall see.

The right answer it to put

~k-1 
= Ek 

- Ek i  
(5-28)

w h e r e

k - i
Ek = 

~~~~~
E

k 

(5 — 29)j 0
represent s the sum of all errors before the k— th step, and to

replace E k i  
in (5-10) by

Sk Ek 
- S

k l
Ek_ l

obtaining

= 
~k 

- Sk Ek + Sk i E
k i  

. (5-30)

C o l l e c t i n g  these resu l t s , we r e p lace (5-9) to (5-12) by

c k l  
= •(uk) 

- 

~
(uk l ) - hk_ j , (5-3 1)  
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hk = 
~k 

- SkEk + Sk_ l Ek_l , (5—32)

v k = Skuk ( 5 — 3 3 )

= 1
~
(vk)hk (5—34)

u~ s-1 = U
k 

+ ‘5k (5—35)

T h i s  is the ‘lash -Hörmander iteration scheme with smoothing.
Will this scheme converg e to the right solution? A necessary

condition (unfortunately it is by no mean s sufficient ) is obtained
by express ing 

~
(uk) 

— 

~
(u k i ) from (5—31):

— 

~
(uk l ) = hk i  + C k i  , (5—36)

rep lacing k-i by k

— 

~
(uk) = hk + c

k ‘ (5 37)

and summing from 0 to n

— 

~(u) = 
~
hk + . (5—38)

Ely (5 -4 )  th is should tend to f if n +

+ 
~
C
k 

= (5 39)

To verify this condition for (5—32), we calculate by
summing (5-32) from 0 to n

~ 

~~~ • •~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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~
hk = - S~ E~ - (5-40)

Now , by (5—29)

n-i
S E  = S  ~~ cn f l  n - k

k=o

which because of (5—18), can be e x p e c t e d  to tend to

so that , with (5-25), condition (5-39) will hopefully be satisfied.
(It is easily seen that (5-39) would not be satisfied if we

had put hk = 
~~ k 

+ Skck l  which was our first choice for modifying
(5—10)).

Equations (5—31) through (5-35) are the basic forni’ilas for
our iteration. To start , we put

h = f
0 0

v = S u
0 0 0 

(5-41)

• 6 = ~p (v )h

u = u  + 6  .i 0 0

iext , we put k = 1 in (5—31) throu gh (5—35), then k = 2 and
so on.

Hbrm ande r writes these equations in a somewhat different
form , introducing a parameter 0 (e

c,~~~
9<co ) which has two tasks:
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1. to represent the variable x as a function of 0 :

x = x(e) , (5-42)

in such a way that

U
k 

= x (0k) (5 43)

with

u = x(e ) , u = lim x(0) ;
e-~

c

2. to serve as a paramete r for the smoothing operator ,
s u c h  t h a t

= . (5—44)
k

In both cases , ek(kO ,l ,2,...) represents a discrete sequence
of values of the parameter 0

A choice for 0 is

0
k 

= + k)1”~ , (5-45)

0 a n d  ~‘ denoting some large constants. Then the difference

A k = 0

k + i  
- 0

k 
(5-46)

= (o ’~ + k + 1) i/1.L (e~ + k)”~

= 0 [(1 + 
1 ) i/I i  

iik L

= O

k
(i + I ~~~~~~ ...- 1)

-—
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is —

A
k 

= p 101~~(1 + 0(0~~)) (5-47)

and can thus be made as small as any desired power of o~~ .

The difference quotient

u — u  6
Uk = 

k+i k 
= (5-48)

can , therefore , be made as close as desired to a de rivative , so
that the di scretization error becomes very small as k +

Hörmander writes the ba sic iteration scheme in a different
form , which explicitly invol ves the parameter 0 . U s i n g  (5— 23 )

and (5-48) and putting

ek A kek

• h k 
= A~ g~ ,

we transform (5-31) through (5—35) into

= A 1 
r ( S k 

- Sk l )(f - Ek l ) 
- A k_ i skek_ i1

v k = Skuk

• U
k 

= 
~

(v k ) g k

u~~~1 
= U

k 
+ A

k
u
k 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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e~~~~e~~+ e J,~

= 
[~

‘(u k) 
- 

~
‘(v k)1 Uk ‘ (5 49)

e~ = A k1[ ~
(u

k i ) 
- 

~
(u k) 

- 

~~
‘ (u k)A k~k]

H e r e  e~ denotes the error due to smoothing, and e~ e x p r e s s e s

the error due to nonlinearity . The qu antity

k - i
Ek = 

~ 
A kek (5 50)

j =0

represents again the sum of all errors before the k-th step.

-
• The smoothing operator S

~ 
used by Hörmander is rather

similar to the simple example (5-21). It also amounts to a
truncation of the spectrum. In (5—21) we had a discrete spectrum ,
n taking the values 0,1 ,2 ,..., and the operator 5

k 
was also

defined only for integers k - Now , however , we have a parameter
O that runs continuously from 8

0 
to , an d S0 has to be

defined for continuous 0 . Therefore , one considers functions
defined on a plane , or generally in R ’~ , which have a continuous
spectrum (2 or n-dimensional Fourier transform). Now the smoothing

simply consists in the app lication of a low-pass filter , which
suppresses higher frequencies , leaving lower freqi’ences unchanged.
In other words , the spectrum of the function to be smoothed is
multiplied by a function

H0 (w) 
= H(!~.) , (5-51)

where H (w) is a symmetric function of the frequency w , w h i c h
is 1 for w i < w 1 and 0 for w~ ~ 

; between w
1 and üj 2

H (w) i s  interpolated by an infinitely differentiable function ,

• - — - — --~~~~~~~~~~~ - —_ _ — - - — —_ ~~~~~~~~~~~~~~ • • ~~~-—— _
~~~~~~~ 

• - •_ — - - —
~~~~

_ - • - _  - • •  ~~~~~~~~~~~~~
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H (w)

_ _ _ _ _ _  

I H8(w) 

1

H (w) 1

W
i 

w 2

Figure 8

Smoothing by a low-pass filter

so that H(w) is everywhere infi nitel y often differentiable. This

is shown , in one dimension , by Fig .8; the generalization to higher
dimensions is straightforward .

Equivalent to a multiplication of the spectrum by (5—51 ) is ,

of course , a convolution of the function to be smoothed with a
function whose Fourier transform is (5-51); cf. (Papou lis ,1968 ,p.74).

The smoothing just described can be applied , with s~ ight
modifications , to functions with support in a compact set K , that
1~ , • to functions which are zero outsi de K . This finally gives the

- 
- 

~i b ~ 1~~y to extend the smoot hing operator S~ to functions
- - ‘ -r e d on a compact manifold , for instance , on the earth ’ s surface

‘~~~~ •C1 l Jro~ d . This is done by covering the manifold by several

s °  p atches and sp litting up the given function into a sum 
-

•

w i t h  compact support by a “ partition of the unity ” ;

- —~~~~ _
~~~~~~~~~ -~~- - -~~~~~

-
~~~ ~~~~~~~~~

-• --
~~~~~

_- -  _— 
~~--
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cf. (Loomis and Sternberg, 1968,p. 405).
In view of smoothing it has been convenient to let 0 run

from 0 to . This contrasts to sec.3 , where we had 0 < 0 < I
It is , however , easy to transform a parameter in [o ,1] to one in

[0 ,00] , for instance , by the transformation

o = 0 + tan(-~- ire ’) . (5-52)

6. Existence and Uniqueness in the
Nonlinear Molodensky Problem

The iteration procedure outlined in the preceding section
is now app lied to Molodensky ’ s problem; now

u = S (6-1)

represents the earth’ s surface to be determined , and

~(u) = (6-2)

• is the given gravity vector on S ; cf. sec.1 .
The crucial problem is , of course , to prove convergence of

the iteration scheme for conditions applicable to Molodensk y ’ s
problem. This is so difficult and complicated that it cannot be
done here; the interested reader is referred to (Hörmander ,1975).

We shall restrict ourselves to stating the main results.
First we must say a few words a ’-”ut the norms which have been used
in this problem. A norm is needea to characterize , in some sense ,
the “ size ” of the function under consideration; it can be considered
as a generalization of the norm of a ve ctor , e.g.
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IaH = (a~ + a~ + a~ )
h/2 (6-3)

for a vector a = (a
~ 

, a , a3)
A well-known norm of a continuous function f(x) defined

in a convex compact set B in R1’ is

I I I
Q 

= s u p~ f ( x ) ~ , (6—4)
xe- B

where “ sup ” denotes the supremum (which , for continuous functions ,
equals the maxim um value). The functions f for which the norm
( 6 -4 )  is f i n i te  form a Banach sp ace ;  cf. (Loomis and Sternberg,
l968,p.218). This space will be denoted here by H°

An appropriate norm for functions that are diffe rentiable
as well as continuous is

II f~i 
~ 

= sup l f ( x ) I  + sup 
~}~

__
~ 

, (6-5)
xE B x~~B i

where ~f/~ x denotes any partial derivati ve. The functions with
i • 1f i n t i e  norm (6 -5 )  form a Bana ch space H

Now it is of basic import ance for Molodensky ’ s problem , as
for many problems in potential theory , to define norms I f il for
O< ci<l , that is , spaces H~ intermediate between H° and H 1

For this purpose we con sider continuous functions that satisfy a
Holder condition with exponent ~ ; they are functions for which

~~~~ — (6-6)
x , y e B

L 

is finite . These functi ons form a Banach space H~ ; the norm is
given by

— - — - - •——-~~~~~~~~ ~~~~~~~~~~~~
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= s u p ( f ( x ) (  + sup ~~~~~~~~~ , (6-7)
XE- B x , yE B i x - y l

It can be shown that

H° D Hal  D Ha2  D H1 (6-8)

fo r

0 < < a 2 < 1 ; (6—9)

that is , there are more functions in H° than in Hal  
, more

functions in Hal than in Ha2 
, and more functions in Ha2 than

in H1 . So satisfy ing a HOlder condition with exponent a is a
• stronger condition than mere continuity and weaker than differ entia-
• bility .

We may also conside r a Holder condition (6-6) wit h exponent
a = 1 ; it is seen that this is almost (although not completely)
the same c’s differentiability. In fact , we shall use H1 for the
s p a c e  of functions satisfying a HOlder condition with a = 1 rather
than for functions with finite norm (6-5).

• So far , we have defined spaces Ha for 0~a~ 1 . For a
• >1 we proceed as follows. Let k be a positive int eger such that

k<a< k+1 (for instance , for a = 5.75 there is k = S ). Denote
by 0k f any derivative of k-th order (for instance ,

-C

2 3
a x1 a x2

for k = 5 ). Then the norm i f il is defined as

- 

—
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lI~ila = s u p l f ( x ) I  + sup  1 ( x ~~~~~~~)l . (6-10)
xEB x ,ye B x-yj

It is clear that (6—7) is a special case of (6—10) with k = 0
In o th er wor d s , the space Ha consists of continuous

functions which are k times differentiable and whose k-th
derivatives satisfy a Holder condition with exponent a—k ~.1

Reformulation of the Mo lodensky Problem. - HOrmander has
reformulated Molodensky ’ s problem in the following way: to determine
a closed surface S in R3 , which is a one-to-one image of the
unit sphere , from given values ~ an d W , such that the following
condi t ions are s a t i s f i e d :

3

W = WoS + ~a A . , (6-li)
i i )

= gcS = W ’oS , (6-12)

W ( x )  = V ( x )  + .
~~
. w~~(X ~ + x~~) , (6—13)

= 0 outside S , (6—14)

V ( x )  = 
c o n s t .  + Q(_~ 3) . (6-15)

l x i

Uniqueness of the solution is achieved by postulating that the
harmonic function V (x) , which represents the external gravitational

• potential , contains no first-degree spherical harmonics ; this is
expressed by (6-15),

j x j  = r (6-16)

L 

d e n o t i n g  the radius vector . The second term on the right-hand side
of (6-13) denotes , of cours e , the centrifugal force potential ,
being the angular velocity of the earth’ s ro tation.
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The new f e a t u r e  is  (6-il) instead of simp ly taking W = WoS
which would be the restriction of W to S . In the modified
express i on , the a~ are three constants to be determined , and the
A . are three suitab ’y assumed functions. The purpose of adding the

linear combinati on ~~~~ is to ensure the solvability of Molodensky ’ s
prob le m fo r ar bit rar~ boundary data .

This is to be understood as follows, Assume the earth’ s sur-
f ace  S to be known , and consider the g iven function l~ = WoS
We can now solve the exterior Dirichlet p roblem

t~V = 0 , ~ + 00 f o r  r 00

V0S = W - ~~ ~
2 (S~ + 52 ) , (6-17)

which gives , for every data function W , a un i que s o lu ti on V ( x )
For ar bitrary data W , the spatial function V (x) will , in
g enera l , contain spherical harmonics of first degree , contrary to the
c o n d i t i o n  (6-15).

Let now (6-11) be used instead of W = W0S . Then (6~ l7)
is replaced by

3
‘loS = W - ~~ ~

2 (S~ + S~) - ~~~~ . (6-18)

A g a i n , the solution of the exterior problem with boundary data VoS
gives a uni que solution V(x) which will contain three linearly

independent spherical ha rmonics of the first degree. Now , h ow ever ,
the three constants  a~ can be chosen in such a way that these
three first-degr ee harmonics vanish.

Th i s is readily seen to lead to three linear equations for

the three unknowns a 1 , a2, a 3 . These equa ti ons w i ll hav e a un i que
s o l u ti on , provided the boundary-value problem

- •
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3
Av = 0 , voS = ~a . A . (6—19)

i J J

has a solution v (x) which contai ns three linearly independent
forst-degree harmonics

(c1 sine cosx + c 2 sino s inx + c3 cose)/r
2 . (6—20)

In fac t , c 1 can then be chosen to be equal to the c 1 of the
boundary-value problem (6-17), and similar for c2 and c3 . Since
the problem (6-18) is the difference of problems (6-17) and (6-19),
all first-degree harmonics will cancel in the solution of (6-18).

To achieve this , we may select the functions A . as follows:

sin ocosx sin e sinx coseA 1 = ( 2 )°~ 
A2 = 2 ~~~~ 

, A~ = ( 2 )°~

(6-21)

If the ea r th ’ s s u r f a c e  S coincided with the telluroid ~ , then
the spatial functions corresponding to the A . by a solution of the
e x t e r i o r  Dirich l et problem would be the first-degree harmonics

s in ocos x , etc. (6-22)
r2

th ems e l v e s , for which the condition (6-20) is certainly satisfied
(with c = a ). If S does not deviate too much from ~ , then
(6—20) is still satisfied becaus e nf ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A .(~~,A ) are now considered as functions on S instead of ~ (no w ,

• of course , c~ ~ a , in g e n e r a l ) .  More gene ra l l y ,  i f  t h e  A .(1I ,!~)
as given by (6—21) indepe ndently of the parameter e , are considered
as functions of 0 with S(o ) = ~ (telluroid) and S(oa ) = S
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(earth’ s sur fa ce) , then

a , = a .(e) (6—23)

will be functions of 0 .

The linear ization of the modified Mo lodensk y problem defined
by (6-il) through (6-15) 3is now done as in sec .3. The onl y difference
is the additional term ~a A , , so that the boundary condition
(3—60) is replaced by 1

. . . 3

(V + <m ,grad V)o~ = W + <ino~~,~~> 
- 

~~.A . , (6-24)
1 J J

w h e r e  
~~~~

. is the derivative of (6-23) with respect to e * Now for
arbitrary boundary data VI and 

-

~~~ there exist unique constants

~~~~~~~ 

a2 , a3 , so that the corresponding boundary-value problem wit h
A V = 0 ou ts ide  ~( o )  admits  a unique solution ~f (x ) that does not
contain spherical harmonics of first degree.

To the Mol odensky  problem re formula ted  in this way, the
Nash -HOrmander method is app lied . Convergence of this method can

• be proved using various HOlder norms and estimates for the linear
problem and also for the nonlinearity . All this is extremely difficult
and laborious. Finally one obtains the

Theorem of HOrmander. Let E > 0 , then;
(1) For all V and ~ in a H 2+C neighb orhood of 

~~and then the modified Molodcn sky prob lem defined by equations
(6—11) to (6—15) has a solution S close to S ~ in H 2+C and

~~i ’ ~2’ a
3

1 C.L ~QU ~~ ~-U U 1-f l  if

(2) If V and ~ are in 11a for some a>2+c which is not

an integer , then 5~~11a 
of S0

(3) One can find a H 3
~~ nei ghborhood which cannot contain

two solutions of the prob lem.

_ _
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• Let us look at this theorem more closely and exp lain its
2+cmeaning.  A H neig hborhood of VI0 = W(L;e0) consists of all

• functions VI for which

• trw — VI 6 , (6—25)
o 2+E

w h e r e  6 is sufficiently small and the norm is defined by (6—10) with
a = 2 + ~ - Smallness of this norm implies that not only the maximum
dev ia t i on  of VI f rom VI

0

max~W 
- VI I0

is small , but also that

ma x iw ’ - VI ’
0

and

max iVI ” — VI”
0

is small , so that not only VI must be close to VI , but also the
fir st and the second derivatives of VI must be close to those of
VI . In addition to this , something more is required. If c 1
then a l s o  c l o s e n e s s  of the th i rd derivatives must hold; if O<c<l
the intermediate HOlder condition is stronger than mere closeness of
the second and weaker than closeness ot the third derivatives: the
difference of the second derivatives must satisfy a HOlder condition.

Closeness of the telluroid ~ and the earth ’ s surface S
in H2~~ means that the maximum deviation of the surface is small
and that , in addition , slopes (first deriva t ives ) and curvatures
(second derivatives) are also simi lar for S and ~ ; in addition ,
there is a Holder condition for the difference of the second deriva—
t i v e S .

L : _~~~~~~~~~~~~~
-- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______ - •~~~~~~ 
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Part (1) of HOrmander ’ s theorem asserts the existence of a
solution provided we have a good approximation ~ for the earth ’ s
surface S not only with respect to the maximum de viation between
S and ~ , but also with respect to first and second derivatives
(plus a HOlder condition), and also a good approximation to potential
and gravity .

This cond i t ion  is ob v i ous l y  very s t rong.  If one uses an
e l l i pso ida l  re ference f i e ld  and the t e l l u ro id  acco rd ing  to the usual
definition , then the actual gravity field and the earth ’ s surface
probably fall short of this condition. It is , however , not required
that the initial approximations for S and W satisfy this condition;
it would be sufficient if any int ermediate approximation would meet 

-

it (because then this intermediate appr oximation could be considered
as the s ta r t ing  po in t ) .  S t i l l  it is not c l ea r  even then whether
HOrmander ’ s theorem could be applied to the actual earth.

Part (2) of the theorem assures that the resulting surface
S will be as smooth as the data: if the data are n times differen-
tiable and if the n— th derivati ves satisfy a HOlder condition , then

- the same will hold true for S
Part (3) ensures uniqueness but under an even stronger con-

di t ion , (H3
~~ neighborhood ) than for the existence theorem of

Part (1) (H2+C neighborhood ). However , HOrmander thinks it highl y
probable that H3+e c o u l d  be r e p l a c e d  by H 2

~~ , so that the
condi t ion for uniqueness wou ld  be the same as for e x i s t e n c e .

In Part 2 , integer va lues  of e are exc luded ;  th is  r e f l ec t s
the w e l l - k n o w n  fact  that HOlder conditions with c ~ 0 are e s s e n t i a l
in potential-theoretical considerations. In Parts l and 3, a l so
integer c are admi t ted .

In conc lus ion  we may say that HO rmander ’ s theorem , al though
not directly applicable to the real earth , gives the first mathe-
ma ti cal ly exac t resu lt s on ex i s tenc e an d un i quen ess for Mo l od ens ky ’ s
problem and is thus of fundamental importance.
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7. The Gravity Space Approach

- Recently, F. Sansd (1977 a ,b ,c ,d) has given a completely
different approach to the nonlinear M olodensky problem. The idea is
to use the three cartesian components of actual gravity , g 1 , g2, g 3
as new curvilinear coordinates , instead of the cartesian coordinates
x1 , x2 , x3 themselves. Thus the potential W be comes a function
of the g.

W = W ( a)  = W ( g
1

, g
2

, g
3

) . ( 7 - 1)

On the physical earth ’ s surface S , the three components g. of
the vect or 

~ 
are given , as well as the potential W ; therefore

the three curvilinear coordinate s g
~
, ga,, g3 of each point of the

surface S are known , or S is a known surface if expressed in
terms of coordinates

There are two ways of interpreting g : either they may be
1

cons ide red  as cu r v i l i nea r  c o o r d i n a t e s  in ordinary space , or as
c a r t e s i a n  coo rd i na tes  in an a u x i l i a r y  space , called gravity space.
Using  the second i n t e rp re ta t i on , we may say that S becomes a known
su r face  in gravity space or the f ree bounda ry -va lue  problem is
transformed into a fixed boundary-value problem. The simp lification
which is achieved in this way for the nonlinear Molodensky problem
is so d e c i s i v e  that  i nconven iences  and d i f f i c u l t i e s  a r i s i n g  w i t h

• this indirect approach are more than compensated as far as theoreti-
cal investigations on exi ste nce and uniqueness of the solution are

• concerned. 
- —

The main inconvenience is that a on e-to—one correspondence
between cartesian coordinates x~ and outs ide and on S
w h i c h  - is the region in which we work , is p o s s i b l e  only if the earth
is non ro ta t i ng .  To see th is , cons ider  e l l i p s o i d a l  g rav i t y  y along
a radius vector in the equ atorial plane. As the height increases ,

L~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
• •

~~~~~~~~~~~~~~~~~~~~~
• 

~~~~
• •

~~~~~~~~~~~
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y first decreases but then it increases again because the centri-
fugal force becomes dominant. So at a certain elevation , y will be
the same as on the ground , which violates a one-to-one correspondence
between gravity vector and position. For the actual gravity field
the situation is similar as in the ellipsoidal case.

If the earth is considered as nonrotating, then the corre-
spondence between gravity and posit ion is seen to be one-to—one
(provided the Marussi condition holds , see below). In other terms ,
the correspondence is unique if we work with the gravitational
potential V and the gravitational vector grad V instead of the
gravity potential W and the gravity vector g = grad W -

It is , of course , clear that only W and grad W (including
the centrifugal force) are directly measurable . However , the effect
of centrifugal force can be calculated with sufficient accuracy on
the basis of our current knowledge of the earth’ s surface (the error
in the centrifugal force is less than ± 0 .005  mga l for a position
error of + 10 meters), and subtracted from W and grad W to give
their gravitational counterparts V and grad V - Therefore , Sansö ’ s
boundary-value problem , which uses gravitation instead of gravity ,
is practically as meaningful as the original Molodensky problem.

In the sequel we shall thus work with the gravitational po-
tential V , which is a harmonic function , and take ~ as

= g r a d  V , ( 7 — 2 )

so that ~ is the vector of gravitation rather than gravity . We
shall , however . contin ite to call g , e v e n  if defined by (7—2), the
gravity vector , to be in agreement with San sb ’ s terminology and
with the term “ gravity s p a c e ’t ( th is  is consistent with current
terminology if we consider the earth as nonrotating ).
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We can thus reformulate Mo lodensky ’ s problem in terms of
V as follows: to find a functio n V (x) which is harmonic outside

• . a unknown closed surface S

= 0 (7—3)

and which , together with its gradient , assumes on S the given

boundary values

VoS = V(u)

(grad V )oS = ~(u) (7-5)

where

u = (~~,A) (7 6)

• as in s e c . 3 .
• We now introduce the components g. of g as new coordi-

• na tes , which are functions of the rectangular coordinates (x1 , x 2 ,

x3)

g. = g . ( x ,) . (7—7 )

If - his transformation is to have an inverse ,

x~ = x ( g~) , (7 8)

- 
•~ then the Jacobian determi nant

det [.~
jL1 

•~~~~~~~ •_ •~~~ ~• _~ -
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must be nonzero everywhere on and outside S . S i n c e

= 

7 

‘

this condition is

r 2
- det a V Ii 0 , (7-b )

[ax . ~‘x -j1 3

which is nothing eis e than the Marussi condition; this condition
(restricted to S ) has already been used before; cf.eq. (3-48). It
will be assumed that the Marussi condition is satisfied everywhere
outside and on S

Now the potential V becomes a function of the vector 
~

V = V(~~) = V (g
1

, g
2
, g 3

) (7—11 )

As we have mentioned , this would reduce Molodensky ’ s problem to a
fixed boundary-value problem (actually a Dirich l et problem) in
grav i t y  s p a c e .  S ince  V as a func t ion  of x satisfies a linear
partial differential equat ion of second order , which is Lap lace ’ s
equa ti on ~V = 0 , it does the same as a function of ~ s i n c e
the transformation (7—7) or (7—8) transforms Lap lace equation into
another l inear  second—order  pa r t i a l  d i f f e ren t i a l  equa t i on .  How ever ,
s ince the t rans fo rmat ion  ( 7 — 8 )  is actuall y unknown , the coefficients
of t h i s  differential equations are no~ known , and therefore this
approach appears hopeless.

Sansb has found an ingenious way out of this difficulty by
transforming not only the coordinates but also the potential ,
in t roduc ing an adj o int  potent ia l

_ _ _ _ _ _ _ _  - - -. - .
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‘V = — V = X kg k 
- V ; (7—12)

this is a Legendre transformation familiar from other fields (ordi-
nary differential equations , analytical mechanics , thermodynamics ,
etc.)
Differentiating (7-12) with respect to we get

• L=~~~~~g + x - ~~iL~~~~ag. ag~ k i ax k 3g~

= x .
1

in view of (7—9). Thus

x~ = }!__ (7—13)g
~

or

x = grad ‘V (7-14)

which shows a striking symmetry bet . een x 1 an d V on th e one
hand and g . and ip on th e other han d .

Also (7-12) is completely symmetric

V + ‘V = x~g~ , (7-15)

and permits to express one potential in terms of the other:

‘V = X
k 

- V , (7-16)
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V = 9k 
- ‘V (7-17)

The matrix of second grad ients of ‘V

= [ag~~~.] 
= [
~J (7-18)

(by (7—13)) is inverse to the matrix of second gradients of V

~tv = 
[a~~~xj] 

= [
~-~1 ‘ (7-19)

cf. (2-35) and (2-36); that is ,

= . (7-20)

Now Lapl ace ’ s operator

2~, 2~,
= + + i__ (7-21)

ax 1 ax 2 ax~

is nothing else than the trace Tr of the mat rix , and
Lap la ce ’ s equa ti on may be written

Tr = 0 (7—22)

This gives us a p ossibility to find the corresponding partial
differential equation for ‘v (g 1 , ~2’ 

g 3) : by com bining (7—20)

-- —- • - -~~~~-V
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and (7—22) we get

Tr(M~~) = 0 (7—23)

On introducing

V 

‘V i j  
= 

~~~~~ 
(7-24)

the matrix becomes

‘V i i  ‘V 12 ‘V 13

= ‘V~~ ‘V 22 ‘V 2 3 
(7—25)

‘V 31 ‘V 32 ‘V 33

Invert ing th is  mat r i x  and tak ing the t race g i ves

- ‘V~~2 + ‘V 22’V 33 
- ‘V~~3 + ‘V 11 ’V 33  

- ‘V~~3 
= 0 , (7 - 26 )

which is a part ia l  d i f fe rent ia l  equat ion for ‘Y(g~ , ~2’ 
93) with

known coefficients (all ÷ 1), but unfortunately a nonlinear one.

( In two di mens i ons , we would again get Laplace ’s equation for

~(g1 , g 2) )
The basic differential equatio n (7—26) may also be written

• in the form

(Tr M ) 2 
- T r ( M ~ ) = 0 , ( 7 - 2 7 )  

-~~~~~~~~~~~~~~~
-

~~
- - --
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which is verified by direct calculation.
In gravity space , the vector j is the position vector ,

th e componen ts g
~ 

serve as rec tan gular coor di na tes and g rav ity
g serves as rad ius vector. In fact , we have from (1—7)

= 9 coss cos A

= g cos~ Sifl A , (7—28)

g3 
= g sine

where ~ an d A are the astronomical coordinates (for a non-
ro tating earth or after removal of centrifugal effects). This shows
that g, •, A are nothing else than spherical p o l a r  coor di na tes
in gravity space. The deri vative a/ag is thus a radial deriva tive
in gravity space; we have

— ~~~~~ 

ag 3~ — ~ ‘V
ag ag~ a g ag k g

using (7-28) . Thus

g = 9k (7—29)

and (7- 17) may be written as

V = g - ‘I’ . (7-30)

The boundary condition in gravity space thus becomes 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -~~~~~--~ - —~~~~~~- - - - -—  _ _ _ _ _ _ _ _
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(g - ‘V)OS
g T V(u) (7-31)

where the known function V(u) is given as a function of the
parameter (7-6) which in gravity space denotes the two angular
sp her ica l coordina tes; Sg is the image of the earth ’ s surface i n
gravity space .

For lar ge values of the spatial radius vector

r = J
~~

xk = x l (7-32)

we have

V = + 0(1-5.) , (7-33)

9 = 
~~~~~

. + 0(1-i.) , (7—34)

where

= GM (7—35)

denotes the product of the gravitational constant G and the
earth ’ s mass M ; we have taken the :oor di na te orig i n a t the
earth ’ s cen ter of mass.

For r + we have g -‘- 0 , so that the spatial infinity
correspon ds to the origin in gravity space. Solving (7-34) for h r

= ~~
2g 2 + 0(g2) , (7-36) 

-~~V - - ~•-- ~~~~~~~ • - —~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  -
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and substituting this into (7-33) we get

1 1  3

V = ~i
2g2 + 0(g2) , (7—37)

which expresses the beha vior of V as 9 + 0 . Finally,

‘V = - 2~~g
2 

+ 0(92) , (7-38)

which is verified by substitution into (7-30), taking (7-37) into
ac count.

We thus arrive at the following formulation of the geodetic
• boundary —value problem in gravity space: to find the solution of

the partial differential equation (7-26) outside Sg with the
boundary condition (7-31) on Sg ; the earth’ s surface S will

F then be given by (7-14):

xoS = (grad ‘Y)oS (7-39)

where xoS denotes the position vector x restricted to the sur-
face S , that is , the position vector of any surface point ,
x(~~,A)

Since the direction a/ag is the direction of the radius
vector in gravity space , in general different from the normal to
Sg , we have an oblique-derivative problem with a known surface
Sg and a linear boundary condition (7-31), but for a nonlinear
partial differential equation (7-26).

• - 

_______________
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8. Linearization ; Comparison to the
Standard Approach

The linearized equation (2—43) shows a striking formal
analogy with (7-17). To take a closer look at this analogy, we shall
also linearize (7— 17) and other relations in gravity space.

We shall use the concept of the gravimetric te l luroid
explained in sec .2: there is a one-to-one correspondence between
the points P of the earth’ s surface S and Q of the gravimetric
telluroid S by postulating

1 ( Q )  = g (P) , (8 1)

that is , the normal gravity vector at Q is to be equal to the
actual gravity vector at P ; cf. Fig.2 .

As always in the gravity space approach , we assume the
earth as nonrotating or , which is the same , the potential is the
gravitational potential V . The normal gravitational potential
will be denoted by V . Then the disturbing potential T is

T = ‘/ - V ; (8—2)

it is the same as in the usual definition I = W — U since the
centrifugal potential cancels in the difference.

The adjoint potentials corresponding to V and V are
given by (7-12):

= 9~ x~ (g~) - v [x ,(g,)] , (8-3)

= - 

~ 
[
~ 

( g . ) ]  . (8-4)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Here we have been careful in specifying the arguments. The gravity
space for normal gravity is identified with the gravity space of
actual gravity : equal numerical values of g. ar~d y

~ 
correspond

to the same point in gravity space. It is , therefore , possible to
denote the independent variable in gravity space simp ly by g

~also when the normal potential is under consideration , for instance ,
in (8-4).

Equations (7—7) and (7-8) give the transformation between
ordinary space and gravity space for actual gravity. The correspon-
ding transformations , between ordinary space and gravity space , for
normal gravity are given by

= y. (x .) , (8 5)

x . = 
~~~. ( g . )  . (8-6)

In (8-5), g . denote the coordinates in gravity space , and y . (x .)

are the functions which express normal gravity in terms of the
coordinates x~ ; the ~.(g .) in (8-6) are the inverse functions
of y ( x .) . T h i s  will explain the notation used in (8-3) and (8—4).

It is clear now that

x ,(g.) = x .(P) (8—7)

are the coordinates of the point P and

= x .(Q) (8-8)

are the coordinates of the point Q , in view of (8-1); for the
sam e reason , P and Q are mapped into the same point in gravity
space:
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Qg = Pg (8-9)

to which both ‘V (g.) and V~(g.) in (8-3) and (8-4) refer.
Let us now calc ulate the difference

T = ‘P - ‘p , (8-10)

which is the gravity space equivalent of the disturbing potential
T as given by (8-2). Subtracting (8-3) and (8-4) we get

T ( 9 . )  = 9k [xk(g.) 
- -

- V [x~(g.)] + V [~~ (g~)] . (8-11)

In agreement with (2-15) we put

X . = 

~~ 
+ 

~ -j (8—12)

(we omit the argument g . : x . denotes the coordin ates of P and

~~~~

. those of Q ) .  Now to V [x .(g.)] we apply Taylor ’ s theorem:

V (x~ ) = V (~~. +

= V (~~.) + k

= V (~~ ) + . (8-13)

The substitution of (8— 12) and (8—13) into (8-11) gives



= 9k C k 
- V ( ~~ ) — 9k~~k 

+ V ( ~~.)

= — V (~~.) + V (~~)

or

= - T [
~•~•~1 (8-14)

In geome tr i cal terms , T at Pg = Q
g 

equal s the negative of T at
Q .

We have thus obtained the result that the adjoint potential
of I is simp ly the negative of T . This is certainly surprising
at first sight , and it indicates a deep relation between gravity
space and ordinary space: gravity space is not just an artifice
introduced ad hoc , but a natural expression of the mathematical
structure of the geodetic boundary-value problem.

This will even become more evident if we consider the
boundary condition. In view of (8-1) we have

Sg = 

~g 
(8—15)

so that the earth ’ s surface S and the telluroid ~ are mapped
into the same surface 5

g 
in gravity space.

By (7-29), the boundary condition (7-31) becomes

~~~~~~~~ 
- ‘V )OS

g 
= V (u) . (8-16)

The corresponding condition for the norma l potential V at the
telluroid ~ is

- • 

_



— ~~~
— r —

—V • V ~ V•V~ ~~~~~~~~~~~~~~~ —.—~‘-~~~~~ • •~V-.,—. • 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(~~~ 
~~~ 

- 

~)oS = ~(u) (8-17)

The subtraction of these two equations , which are linear in ‘V and

‘V , gives by (8-10):

(~~~ 
~~ k 

- T ) O S
g 

= V(u) - ~(u) . (8-18)

Now ,

V(u) - 

~(u) = W (u) - U (u)

= W  - U
P Q

be cause 1~ refers to S and IT to ~ and because the difference

of the centrifugal potentials at P and at Q is neg ligibly small.

By (2—3) this is

V(u) - V(u) = ~W . (8—19)

Furthermore T on 5
g 

equals - T on . Thus (8-18) becomes

- 

~~ 
+ I = ~W , (8-20)

which is now a boundary condition on the telluroid ) . The

rep l acemen t of 9k 
by 

~ k 
changes (8-20) onl y be second-order

quantities , which are to be neglected. Thus the boundary condition
• on ~ finall y takes the form

I - Tk 
fE_~ = . (8-21)
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This is nothing else than (2—43) with A~~ = 0 for the gravi-
metric tel luroid , and with (2-44). We thus have recovered the
fundamental boundary condition of sec .2 via gravity space.

What about the differential equation which t must satisfy?
We could derive it from (7—26), but there is a much simpler ‘Nay,
using (8-14). In this equation we substitute (8-5) and (8-6),
obtaining

• [yJx .)j = - T(x .) (8-22)

Since I satisfies Laplace ’ s equation

• ~T = o , (8—23)

T = — I will also satisfy it:

= 0 ; (8 24)

Vt is considered as a function of y j then the Laplacian is
to be expressed in terms of y . , which here are to be regarded as
curvilinear coordinates in ordinary space related to the x~ by

(8—5). It is not difficult to transform the Laplacean to curvilinear
coordinates; cf. (Hotine ,1969 ,p.19); the important thing to note is
that it does not have the “ cartesian ” form:

+ ~~~~~~~~~ + ~~~~~~~~~ . (8-25)
a1 1 a12 a13

Th us , as far as the linear problem goes , the gravity space
approach simp ly amounts to the use of curvilinear coordinates
in ordinary space. It is , therefore , not essentially different from
the usual approach outlined in sec .2; it is even less general as it

I ~~~~~~~~~ — ~~~~~~~~~~~~ 
• _ •~~~r _ . —-- — ~~~~r=_ -_, ~~~~~~~~~~~~~ •• • _ . . _
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supposes a nonrotating earth. The situat ion is quite different for
the nonlinear problem where the gravit y space approach introduces
essentially new features and a conside rable simplification.

Different as the ordin ary approach and the use of gravity
space are , the linearized problem is the same in both methods. This
is practically important because the linearized Mo lodensky problem
is probably sufficient for all present applications , as we have
poin ted out at the end of sec .2.

Even for the linear problem , however , the gravity space
approach provides a deeper insight into the p roblem; in particular ,
the structure of the operator that acts on I in (2-43),

I — y
~ ~

‘_— , (8-26)

is interpreted by the relation between potential and adjoint
potential as expressed by (7-17).

Spherical Approximation. — Let us finally intr oduce a
spherically symmetric normal potential; this corresponds to the
“spherical approximation ” outlined in sec.2.

For a spherically symmetric mass configurati on we have

‘I —

r

cf. (7—33). By a simple change of scale of length and without loss
of generality we can make ~i 

= 1 , obtaining

(8-27)
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Differenti ation with respect to x~ gives

x.
1

11 ~~r

so that

( - )
r

with

y 2 = 1k1k 
, r~ = xkxk . (8-29)

It is , therefore , possi ble to express the x1 in terms of y
~ by

3
2x . = — v y. ; (8—30)

in the case of a spherically symmetric mass configurati on , cartesian
• coordinates x1 and gravimetric coordinates are thu s related

in a simple way.
Another po ssibility to convert gravimetric coordinates

into cartesi an coordinates , denoted by y. , is by putting

= 
2 

(8-31)

V 
These coordin ates y~ can be interpreted in the following way. Let
us consider an inversion in the unit sphere r = 1 ; cf. (Kellogg,
l929 ,p.231). This inversion transf orms a point with coordinates
x1 into a point with coordinates xj given by

• -~~~~~~~~~~ V — -- ~~ — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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x = 1_~. x j  (8—32)

the inverse transformation being

x . = _~~_~~- x ’ with r ’2 x~x~ . (8-33)

On substituting (8-30) and comparing the result with (8-31) we see
that

y . = — x~ , ( 8 — 3 4 )

so that , apart from the sign , y. are the cartesian coordinates of
the image of the point x . under an inversion in the unit sphere.

The corresponding trans formation of harmonic functions is
called a Kelvin transformation (ibid .,p .232 ). The basic princip le

is that if U(x .) is a harmonic function of x. in a domain T
1 1

then

x l
V(x~ ) = iT~ U (—~-~) (8-35)r r ’

is a harmonic function of x~ in the domain I’ into which T is
1

carried by the inversion.
So far , we have interpreted this transformation as a

• 

• 

point transformation , which transforms a point P(x .) into a point
P ’ (x ’) , the coordinates x . and x .’ referring to the same

1 1 1

cartesian coordinate system. We may, how ever , interpret it also ~s
a coor dinate transformation , by which the same point in space i~
referre d to d i fferen t coord i na te systems x 1 and xl . Then the
Kelvin transformation implies that if U(x 1) satisfies Lap l ace ’s
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equation in “ cartesian ” form us i ng x .

3 2U a 2U a 2U
~ U = —

~~- + — + —~
. = 0 , (8-36)

X 
Dxl ax~ ax

then the function (8—35) satisfies Lap lace ’ s equations in cartesian
form using x ’

2 2 2

~ 
a V 

+ ~ V 
+ a V 

= o . (8-37)
X ’ 

ax1 2 ax~
2 ax;2

In view of (8—34), La pl ace ’ s operator will then have cartesian form
also in coordinates y

~ V = 0 . (8-38)
y

The symbol 
~~

, etc. will be reserved for Laplace ’ s operator
in cartesian form.

Let us now appl y these considerations to the present problem.
We have seen that T (x .) satisfies Laplace ’ s equation A T  = 0
cf. (8—23). r (y .) also satisfies Lap l ace ’ s equation (8—24), but
not incartesian form (8-25). If in ~~~~ we introduce new coordin ates

y • , defined by (8-31), putting
1

y = y y  with y 2 = , (8-39)

then the new function

= = - (8-40)

_ _ _ _ _ _ _ _ _ _ _ _
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will satisfy

• 
= 0 (8-41)

• because of (8-35) wit h U = - 1, V = ~ and y. = - x ’ , s i n c e  I

satisfies A I = 0
Al so the function v defined by

v (y.) = 
~~~~~~~ 

- 

~~
) (8-42)

is harmonic:

= 0 . (8-43)

This can be easily verified by direct calculation: there is

• 2 A v  = + y -
~~
_ 

~~ . (8-44)

The interpretation of v is as fo llows. Consider AW as given by
(8-21). (Of course , A has here nothing to do with Lap lace ’ s
operator!) It may also be expressed in terms of t by

AW = - . (8-45)

In (8-21) , AW has been considered as defined on the telluroid
It may, however , also be regarded as a spatial function , defined
outside and on ~ , s i n c e  ~ is a func t ion  of the which can
be inter preted as curvili near coordinates in space. If now AW

___________________________ ________ ______________________________

_ _ _ _ _ _  —V 

- ----

~~~~~~~~~~ 

- ———
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regarded as a spati al function , is expressed in terms of y1 , we
can also transform (8-45) to these coordinates. This is best done
by transforming it first to the form

AW = 41. - Vt , (8-46)

using (7-29) with instead of g . . Now

= 1
~
’
k
’
~
’
k (8-47)

is related to

= v’y~~7 (8 48)

by

I = y2 , y = , (8 49)

by (8-39). Therefore ,

2 D T  dv 1 at
(8-50)

and (8-46) takes the form

= y ~~~~~~ - t . (8-51)

Substituting

Vt = y
~ (8—52)

-- -•~~~~ 
•.
~~ 

•
~~~~~~ 

•• •
~~~~~~~ ~~~~~

• •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••• ~~•~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- according to (8-40), we get

= ~~~. y~(Y~) -

= 
~~~ y(y~± - •) . (8-53)

Using again (7-29) with instead of we obtain

= 
~~ 
y (y~~~~ - 

~~) 
, (8-54)

• and the comparison with (8-42) shows that

V = . (8—55)

This furnishes the desired phy sical interpretation of v
These two auxiliary functions

•(y ) = I = - I. , (8-56)

v(y., ) = ~
(
~j-~--- - •)  = (8 57)

which , in the case of spherical symmetry , satisfy Lap lace ’ s equation:

• 
A~~ 

= 0 ~ (8-58)

• A v = 0 , (8—59)H
will p la y a ba sic role in the next section.

V ~~~~~~ •V -—~~ —— V - -  ~~~~~~~~~~~~~~~~~~~~~~~ 

V• •

~~~~~~~~~

- VV• - — • -V --— -
~~~~~~~~~
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9. The Nonlinear Problem

Reformu lation of the Problem. - If ‘V is a solution of the
boundary-value problem defined by the differential equation (7-26)
and the bounda ry condition (7—31) , which , in view of (7-29), may be
written in the form

- ‘V = V(u)  on Sg , (9—1)

then the function

V 
‘V = ‘V + c.g 1 (9—2)

wi th  an a rb i t ra ry  c ons tan t  vec tor  c~ , i s  also a solution of the
problem. In f ac t ,

~ij Dg .~~g~ 
= Dg~~g~ 

= (9-3)

so that ~ satisfies (7—26) if ‘V does , and

• 9k ag k 
- = 

k 
- 

‘ (9 4)

• so that the boundary condition is also satisfied.
It is easily seen that the add ition of the term c~ g~ to

‘V represen ts a translation by the vector c~ in ordinary space:
by (7-13) we get

= ~~-~~
_ + c~ = x~ + c 1 . (9—5)

_ _  _ _ _  -—
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We obtain a unique solution by requesting ‘V to have the form (7-38),
which places the x-coordinate system at the earth’ s center of mass.
This is in complete correspondence with the usual treatment of
Molodensky ’ s pro blem.

However , the solution will not exist for arbitrary boundary
values V but only for those functions V(u) which satisfy n
conditions; from the discussion of the linearized problem we expect
n = 3 . It -is true that if we had idealized conditions , especially
ab sence of measur i ng errors , then the data function V(u) would
satisfy these conditions because the solution exists for physical
reasons. In practice , ho wever , especially because of measuring and
interpolation errors , we cannot expect that the actual V(u) will
exac t l y  sa t i s f y  these cond i t i ons .

Th is  suggests  a refo rmu la t ion  of the boundary-va lue problem
in gravity space along the lines of Hörmander ’ s formulation; cf .sec .6 ,
e s p e c i a l l y  eq. (6-11) :  we rep lace  the boundary cond i t ion  (9-1)  by

- Vj J = V(u)  + a .g .  On S . (9 - 6 )

The new boundary-va lue  problem can now be expec ted  to have a so lu t i on
for arbitrary data functions V (u) . The three constants a 1 , a2, a3
are determined as unknowns and , so to speak , t a k e  c a r e  of t h e  t h r e e
cond i t i ons .

Transforma tion of the Differential Equation. — The main
difficulty in the gravity space approach lies in the differential
equat ion for the ad jo in t  potent ia l  ‘V . This equat ion , given by

• ( 7 - 2 6 )  or ( 7 - 2 7 ) ,  is unfor tunate l y cons ide rab l y more comp l i ca ted
t h a n  L a p l a c e ’ s equat ion for the or ig inal potent ia l  V

• The cons ide ra t i on  of the spher ica l  a pp rox ima t ion  in the
preced ing sec t ion  sugges ts , howeve r , that it may be poss ib l e  to

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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red uce , at least approximately, this differential equation to
Lap lace ’ s equa tion.

Firs t , in agreement with (7-38), we sp lit off the main part
i n  ‘V by putting

‘V (g .) = - 2~
2 g 2 

+ r (g.) . (9 - 7 )

where

g 2 
= g g . (9-8)

k k

This may be interpreted by (8—10) as using a sphericall y symmetric
reference potential

1 1

= — 2~i
2 g2 (9-9)

in grav i ty  space ( the reader w i l l  f ind it best to cons ider  a l l
transformations to follow as transformations in gravity space and
to forget , for the time being, abou t or di nary space). In con tras t
to the linear treatment in the preceding section we shall not intro-
duce an y approximations , so that the transformed differential
equ ations will be as rigorous as the original one , eq. (7-26).

The reference potential (9-9), which is spherically symmetric
i n grav ity space , is the adjoint potential of a potential V that
is spherically symmetric in ordinary space. In fact , by (7-13) and
(7—15) ,

X
k 

= = - , (9~10)
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1 1
2 2r = 

~
xkxk 

= ii g , (9 11)

1 1  1!
= - = - 

~~g
2 

+ 2p 2g2

= ~i
2g2 = J~. . (9~ 12)

Eq. (8—31) suggests the substitution

= g
~
4g
~ . (9-13)

(N ow , however , the y . are to be considered as curvilinear coordi-
nates in gravity space , having no direct relation with cartesian
coordinates in ordinary space. ) This transforms the reference
potential into

1

‘V = - 2ii~y , (9—14)
1

eliminating the singularity g2 at the origin g = 0
We now i n troduce the new func ti on

= .1. , (9—15)

so that

-r = y~ . (9—16)

If we neglec ted a l l squa res an d hi g h er powers of -r , we should
have the linear spherical approximation discu ssed in the prece ding

~ 

~~~~~~~~~~~~~~~~ — -—  —--.-— - -~~—~~~~~~~~~ • ~~~~ -~~•.-~~~--- --- ~~- - - - - --~ - - - -—-•-- -~ ------
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section since , apart from a scale factor , (9—12) is identical to
(8-27). This shows that c~ , as a function of y , must satisfy
a differential equation of form

= O (,~
2 ) (9—17)

there can be no term O (~ ) on the right—hand side since A~~ = 0
as a linear approximation , by (8—58).

In fact , Sansc5 has calculated the exact differential equa-
tion which ~ must satisfy. This is done by substituting

1

‘V = — 2p 2y + Y~ 
(9-18)

into (7-27) and performing some lengthy but straightforward trans-
formations. The result is (Sansô ,1977a ,p.69):

= ~~
2B 1(~~,~ ) , (9-19)

w here B 1 (~~,~ ) ~s a quadratic operator given by

B 1 (~~,~ ) = - Y~ ’)A~~ + y
2 [(IrL)2 

- Tr (L 2
)] (9-20)

(it must be quadratic since the original equatio n (7-26) is). The
matrix L has elements

L .~ = 
~~~ik 

- ~ ~~i~~k )~~ (9-21)

w here ~~~~. denotes the elements of the unit matrix and
ii
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V

= 

~~~~~ ~ (9-22)

~~~~
‘ is defined by

Dy ,

• and A~~ expresses th e Lap l ace opera tor i n the “car tes i an ” f o rm

A = 4 + + (9-23)
ay 1 Dy 2 ay 3

needless to say , y. are not rigorously to be interpreted as
cartesian coordin ates in ordinary space.

The boundary operator (9—1 )

~~~~~ 
- ‘V = g 

~~~~~~ 

- ‘V (9—24)

is transformed as follows. Using (9-9) we find

g -
~~
-
~~~ 

- = ~i
2g 2 , (9-25)

so that

g - ‘i’ = ji
2g + g — t . (9 26)

Si nce
1

y = ~ 2 (9—27) 

- -•~~-—•-- V~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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by (9-13), we have

1
— Di dy 

— 1 2Dt 9 28-
~
i-

~~
-
~~~

i-
~~

g •5.~7 
-

In view of these relations we get

- ‘V = p~y + ~~~~ - (9 29)

On substituting (9-16) and taking (9-6) into account we find as
boundary condition for c~

..v — = 2 [~~u + ~~~~ on Sg (9-30)

where

V ( u )  = _ _ _  - (9-31)

is a function of the data , and

~(u) = YOS g V.(u) F Y jOS g (9-32)

denote the values of y and y . calculated for that point of the
surface S which has the parameter ug

Since the direction of a/ay , as  well as the direction of
a /ag , i s  the direction of the radius vector in gravity space ,
we still have an oblique derivative problem as in the original
formulation given at the end of sec.7; the problem is , however ,
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simplified because we now have a “quasilinear ” di fferential
equation (9—19), which has a form suitable for an iterative solution.

It is , nevertheless , appropriate to transform the problem
still further by introducing a new potential v by

v = - 

~
) = ~(y~~ - 

~~
) . (9-33)

This substitution has been motivated in the precedi ng section; cf.
(8-57). As a linear approximation , v(y.) is harmonic and is ,
furthermore , related to the potential anomaly AW

In fact , we have even rigorously

V (g1) = ~
2g2 + yv , (9-34)

-• so that yv represents the perturbation in the potential V , if
expressed in gravimetric coordinates g

~ 
, in the same way as we

had

‘ V ( g~~~~ ) 
= - 2~

2g2 + y~ , (9-35)

= y~ representing the perturbation in the adjoint potential ‘P
It is easy to verify (9—34) by substituting (9—35) into (7—30).

By means of (9-33), eq. (9-19) is finall y transformed into
a differential equation for v

= ~~
2B2(v ,v) (9-36)

- - ~~• - -- --V•-—- V - -- • - - —  - - •
~~~~~~~~~~
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where the quadratic oper ator 82 is given by

B2 (v ,v) = - V A V  - v ’~~~ vdy +

+ 2 [(TrN)2 - Tr (N2)]

+ 4y ~TrM .TrN - T r ( M N) ]  . (9-37)

M and N are 3x3 m atrices with elements

= 

~~~ik 
- 

3 Y~~Y~~ (9-38)

N . ,  = (6
1k 

- 4 ~
‘i’

~
’k )~~v d y  , (9—39)

where 6 . . denotes the e lements  of the unit mat r i x  and
1~)

v . ,  = ; (9-40)

v ’ is defined as

-

• 

v ’ = -
~~~~~ (9—41)

an d A again deno tes the “car tesian form ” of th e Lap lac e operator.
The solution of (9-36) has to satisfy the boundary condition

voS g = V + ~~~~ (9-42)
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V = V (u) and ~ = ~(u) being given by (9—31) and (9—32). T h i s  i s

simply the boundary condition for a Dirichiet problem.
By means of the substitution (9—33) it has thus been

possible to transform Sansó ’ s problem into a Dirichlet problem
for the nonlinear equation (9—36). The price to be pa id  is that th i s
equation is a nonlinear integro -di fferentia l equation , as (9-37)
shows.  However , s i n c e  the principal part of (9—36) is simply Laplace ’ s
equation , the quadratic right—hand side being relatively small , our
equation is still relatively manageable (it is hardl y necessary to

- remind the reader that (9 -36 )  is as r igo rous  as the or ig ina l  equa ti on
( 7 - 2 6 ) ~ no neg l e c t i ons  are involved).

This reduction to a Dirichiet problem is similar to methods
used in the linear Mo lodensky problem , cf. (Brovar ,1964), (Krarup,
1973: the “ Prague method ” )  and the reduc t ion  the Bri l louin sphere
in the present  s e c .4 .  T h e  enormous advantage of the gravity space
approach is that the boundary condition (9—1) is linear even for the
nonlinear problem , so that methods can be used that are applicable
to the Mo lodensky problem only in its linearized form.

A necessary condition for the existence of the solution is

= 0 . (9-43)
i y=o

In fact , the differentiation of (9—33) gives

2~~~ = - . (9 44)

If the solution q i s to b e regular wi th  f i n i t e  second d e r i v a t i v e s
at the origin y = /~ 3J~ = 0 , then (9-44) must tend to zero as

-+ 0 . The condition (9-43) is to be provided for by suitab l y
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disposing of the free constants a1, a2, a3 in the boundary condi-
tion (9—30).

If a solution v satisfy ing (9—43) has been found , then
$ is obtained by

• 
= — 2v(0) + 2y ~~ [v (y) — v(0)] y 2dy ; (9—45)

it is easy to verif y by direct substitution that this solution
satisfies (9—33). Then the adjoint potential ‘V is given by (9-35),
and finall y the earth ’ s surface is obtained by (7—39). A check is
provided by (9-34).

Compared with the Nash-Hörmander approach to the nonlinear
Molodensky problem , it is relatively simple and straightforward to
solve (9-36) by a Newton iteration scheme , considering p~~

’2 as a
small parameter .  In th is way,  Sansd has obta ined f i rs t  resu l t s  on
existence and uniqueness of the solution. He has proved that a
unique solution exists provided

(9—46)

where the constant 6 is sufficie ntly small. The norm is a Holder
norm very similar to the norm used in sec.6.

The condition (9—46) is dir ectly comparable to (6-25); the
constants 6 will be different. It means that V as given by (9-31)
should be small , as well as the first and second derivatives , inclu-
ding a HOlder cond ition on the second derivatives. Since v denotes
the deviations from a spherical symmetrical solution , this condition
is again very restrictive.
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10. Conclusions

Dur i n g th e recen t years , the problem of existence and
uniqueness of the solution for Mo lodensky ’ s pro b lem has for the
first time been treated with adequate mathematical rigor. Certainly,
existence and uniqueness have been proved only under very restrictive
conditions on smoothness and smallness of the deviations from a
“normal” solution , conditions which are hardly met in the actual
geodetic situation. However , these results have been obtained
rigorously .

The treatment by HOrmander uses a very adv anced inverse
function theorem and is mathematically extremely comp licated; it
applies to a rotating earth. The mathematical complexity is mainly
due to the fact that tlolodensky’ s probl em is a free boundary-value
problem , the boundary surface being unknown.

Th e grav ity space a p proac h d ue to Sansd transforms th e free
boundary problem into a fixed one , although for a nonlinear partial
differential equation. It nevertheless reduces essentially the
mathematical complexity. The limitation of the gravity space approach
is the restriction to a nonrotating earth; practically this amounts
to the use of gravitation instead of gravity by reducing for the
effect of centrifugal force.

From this point of view , an ex tension of Sansd ’ s approac h
to a rotating earth by an iterative procedure (using the fact that

~ is small) appears less urgent; at any rate it seems to be not
quite easy to prove convergence of such an iteration.

The resul ts obt ained so far by HOrmander for w ~ 0 and
by Sansd for w = 0 are comparab le ; th e con diti ons are si m i larl y
restrictive. It wou ld , of course , be des i ra b le to ob ta i n stronger
resul ts , for norms II 

~~~~~~ 
or even be tter I~ Il

~ 
with O< c<l

- —-- - - -—- - - - --V—•-- -~~~~--
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For thi s purpose th e grav ity space approa ch appears to b e more
prom ising since it is so much easier.

The impact of the gravity space approach to the theory of
Molod ens ky ’ s pro blem appears to be enormous; it may well be compa-
rable to the impact of Hamiltoni an met hods to Newtonian classical
mec hanics (both apply a Legendre transformation! ).

From a practical point of view it is important to note that
th e linear app rox i ma ti on (l i near i n th e anomalous po ten ti al T ),
whi c h i s pro bab l y suff ic i en t for a l mos t all pres en t purposes , is the
same in the usual approach and in gravity space . Therefore , the
number of the usual methods for practically solving Molodensky ’ s
p ro b lem , such as Molodensky ’ s series and related solutions , is not
augmented by the new developments .

~

. --- _ - -_
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